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A mathematical model is derived for acoustic streaming in a microfluidic channel confined between a
solid wall and a rigid reflector. Acoustic streaming is produced by two orthogonal ultrasound standing
waves of the same frequency that are created by two pairs of counter-propagating leaky surface waves
induced in the solid wall. The magnitudes and phases of the standing waves are assumed to be different.
Full analytical solutions are found for the equations of acoustic streaming. The obtained solutions are
used in numerical simulations to reveal the structure of the acoustic streaming. It is shown that the inter-
action of two standing waves leads to the appearance of a cross term in the equations of acoustic stream-
ing. If the phase lag between the standing waves is nonzero, the cross term brings about circular vortices
with rotation axes perpendicular to the solid wall of the channel. The vortices make fluid particles rotate
and move alternately up and down between the solid wall and the reflector. The obtained results are of
immediate interest for acoustomicrofluidic applications such as the ultrasonic micromixing of fluids and
the manipulation of microparticles.

� 2018 Elsevier B.V. All rights reserved.
1. Introduction

The operation of microfluidic systems is based on the use of
physical effects produced by ultrasound waves in a microscale
environment. Characteristic dimensions of microfluidic devices
lie in the range of several micrometers to several hundred microm-
eters. The sizes of objects whose behavior and properties are inves-
tigated in microfluidics are from several nanometers to several
micrometers. These conditions require the application of acoustic
wave fields with frequencies from the upper kHz range up to sev-
eral tens of MHz, so processes that occur in microfluidic devices are
of ultrasonic nature.

The present work studies theoretically acoustic streaming in an
ultrasonically actuated microfluidic channel. Acoustic streaming,
along with acoustic radiation forces [1], is one of the main tools
that are used in microscale acoustofluidics for contactless manipu-
lation of various objects, such as functionalized microparticles and
biological cells [2–4]. Another challenging problem of microflu-
idics, where acoustic streaming plays a key role, is ultrasonic
micromixing of liquid solutions in microfluidic devices. The use
of acoustic streaming allows one to enhance this process [5–7]. A
detailed special-purpose review on applications of acoustic
streaming in microfluidic systems has been provided by Wiklund
et al. [8].

In acoustofluidic devices, acoustic streaming is generally
boundary layer driven streaming, which is caused by boundary
layer effects between an acoustically excited fluid and solid bound-
aries [8]. A first mathematical description of boundary layer driven
streaming was given by Rayleigh [9]. Based on a number of
assumptions, he derived a solution for the case of a plane standing
wave propagating between two planar rigid walls. His solution
predicts acoustic streaming outside the viscous boundary layer
and is commonly referred to as ‘‘Rayleigh streaming” or ‘‘outer
streaming”. Further development of Rayleigh’s theory has been
performed by Schlichting [10], Westervelt [11], and Nyborg [12–
14]. These studies are reviewed by Boluriaan and Morris [15] and
Wiklund et al. [8]. Hamilton et al. [16] have obtained an analytical
solution for acoustic streaming generated by a standing wave
between two planar rigid walls that allows one to calculate the
streaming field both outside and inside the boundary viscous layer.
Recently, Doinikov et al. [17] have generalized the solution of
Hamilton et al. [16] to the case of two orthogonal standing waves
of the same frequency and shown that the interaction between the
waves generates acoustic streaming that makes the fluid rotate in
planes parallel to the walls. There are also a number of numerical
simulations of boundary layer driven streaming, which are
reviewed by Boluriaan and Morris [15], see also [18,19].
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Fig. 1. A fluid layer of height h is located between an elastic solid wall and a rigid
reflector. Two orthogonal surface acoustic waves are excited in the solid wall. The
waves are emitted in the fluid, reflected at the channel top and produce two
orthogonal ultrasound standing waves in the channel, which propagate along the x
and y axes.
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The theoretical studies described above assume that the bound-
aries, in which an ultrasonically activated fluid is confined, are
fixed. In other words, they assume that it is not the vibrational
motion of the boundaries that drives the fluid. However, in
acoustofluidic devices, the fluid is commonly excited through the
vibration of microchannel walls. Muller et al. [18] and Lei et al.
[19,20] performed numerical simulations of boundary layer driven
acoustic streaming in bulk acoustic wave (BAW) based systems;
see also [21] for additional theoretical and experimental data.
BAW-based systems are actuated by a piezo transducer attached
to the wall of a liquid-filled microchannel. As a result, an acoustic
wave is generated in the fluid, which propagates perpendicularly
to the vibrating wall. Lei et al. [19,20] showed that, in addition to
the classical boundary-driven acoustic streaming, such as Rayleigh
streaming whose vortex plane is perpendicular to the transducer
face, streaming flows can arise in a plane parallel to the transducer
face. Such streaming patterns, named transducer-plane streaming,
are typically generated in planar microfluidic resonators, where
the acoustic energy gradients in the lateral directions parallel to
the transducer face are significant in addition to the gradients per-
pendicular to the transducer face. The existence of this kind of
acoustic streaming is confirmed experimentally [8,19,22].

In recent years, surface acoustic wave (SAW) based systems
have gained wide application in microfluidics [23–26]. SAW-
based systems are actuated by leaky surface waves that are excited
in a solid substrate. These waves propagate along the solid-fluid
interface of a microfluidic channel and emit acoustic energy into
the fluid layer. As a result, acoustic waves, and hence acoustic
streaming, are generated in the fluid. In the context of our theoret-
ical study, relevant works to be mentioned are as follows. Vanneste
and Bühler [27] have calculated acoustic streaming produced by a
leaky surface wave in a fluid layer with a free boundary. Based on a
number of assumptions, they derived linear analytical solutions
and then solved numerically the equations of acoustic streaming.
Nama et al. [28] applied a finite element scheme to model numer-
ically the acoustophoretic motion of particles inside a liquid-filled
PDMS microchannel due to acoustic radiation forces and acoustic
streaming. They used impedance boundary conditions to model
the channel walls and assumed that the system was actuated by
two counter-propagating surface acoustic waves that formed a
standing wave in a piezoelectric material interfacing the liquid
channel. Their results showed that excited acoustic fields were sig-
nificantly different from those observed in BAW-based systems.
Recently, Doinikov et al. [29] have derived analytical solutions
for acoustic streaming in a microfluidic channel confined between
an elastic solid wall and a rigid reflector, assuming that the acous-
tic streaming is generated by a standing wave that is created by
two counter-propagating leaky surface waves induced in the solid
wall. A discussion of rotational motion that can be induced by
acoustic streaming in SAW-driven systems is provided by Bernard
et al. [30].

The aim of our study is to develop a theory that describes acous-
tic streaming in a microfluidic channel confined between an elastic
solid wall and a rigid reflector. We assume that the ultrasonic actu-
ation of the above system is produced by two orthogonal ultra-
sound standing waves of the same frequency that are created by
two pairs of counter-propagating leaky surface waves induced in
the solid wall. It should be emphasized that the standing waves
are assumed to have, in general, different magnitudes and phases.
In Section 2, analytical solutions to the equations of acoustic
streaming are derived. In Section 3, numerical examples are pro-
vided that demonstrate the structure of the acoustic streaming
under study. To anticipate, we show that, if the phase lag between
the driving standing waves is nonzero, the acoustic streaming pro-
duces circular vortices in which fluid particles rotate about axes
perpendicular to the solid wall of the channel and move alternately
up and down between the solid wall and the reflector.

2. Theoretical model

2.1. Problem formulation

Let us consider a fluid layer that is confined between an elastic
solid wall and a rigid reflector, as shown in Fig. 1. The solid wall
occupies the half-space with z > 0, the fluid is within the spatial
layer with �h < z < 0, and the reflector is located at z ¼ �h. We
assume that two pairs of counter-propagating leaky surface waves
are excited in the solid wall. The waves are emitted in the fluid,
reflected at the channel top and produce two orthogonal ultra-
sound standing waves in the channel, which propagate along the
x and y axes. The standing waves are assumed to have the same
frequency but, in general, different magnitudes and phases.

2.2. Linear solutions

The linear fluid velocity can be represented as

v ¼ vxðx; z; tÞ þ vyðy; z; tÞ; ð1Þ
where

vx ¼ ½vxxðx; zÞex þ vxzðx; zÞez�e�ixt ; ð2Þ
is the velocity produced by the standing wave propagating along
the x axis and

vy ¼ ½vyyðy; zÞey þ vyzðy; zÞez�e�ixt; ð3Þ
is the velocity produced by the standing wave propagating along
the y axis. The expression for vx was derived in our previous paper
[29]. An expression for vy can be written by analogy, just replacing x
with y. As a result, expressions for the velocity components can be
represented as

vssðs; zÞ ¼ 2i½iks1sðzÞ � qvs2sðzÞ� sinðksÞ; ð4Þ

vszðs; zÞ ¼ 2½qf s3sðzÞ þ iks4sðzÞ� cosðksÞ: ð5Þ
Here, s denotes x or y and the following definitions are used:

s1sðzÞ ¼ A1seqf z þ A2se�qf z; ð6Þ
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s2sðzÞ ¼ B1seqv z � B2se�qv z; ð7Þ

s3sðzÞ ¼ A1seqf z � A2se�qf z; ð8Þ

s4sðzÞ ¼ B1seqv z þ B2se�qv z; ð9Þ

qf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2f

q
; qv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2v

q
; ð10Þ

kf ¼ x
cf

1� ix
qf c

2
f

nþ 4
3
g

� �" #�1=2

; ð11Þ

kv ¼ 1þ i
dv

; dv ¼
ffiffiffiffiffiffi
2m
x

r
; m ¼ g

qf
; ð12Þ

k is the wavenumber of the leaky surface waves, given by (44)
(or (57)) in [29] (note that k is a complex number and hence
includes attenuation), cf is the speed of sound in the fluid, qf is
the fluid density at rest, g is the shear viscosity, n is the bulk viscos-
ity, dv is the viscous penetration depth and m is the kinematic vis-
cosity. To obtain the components of the x wave, one should set
s ¼ x in the above equations, and for the y wave, s ¼ y. A1s, A2s,
B1s, and B2s are complex constants that describe the magnitudes
and the phases of the standing waves. It is shown in [29] that these
constants are expressed in terms of the complex amplitudes of the
driving surface waves, which are activated in the solid wall. Thus,
setting the magnitudes and the phases of the driving x and y sur-
face waves, one can set relative magnitudes and phases of the
induced x and y standing waves, which produce acoustic streaming
in the fluid.

For detailed information on the linear solutions, the reader is
referred to our previous paper [29], where these solutions are
derived.

2.3. Acoustic streaming

2.3.1. Equations of acoustic streaming
Let us denote the Eulerian mean velocity by V . We will follow

the approximation proposed by Nyborg [13], which assumes that
the Eulerian mean velocity behaves as a velocity of an incompress-
ible flow so that one can write

$ � V ¼ 0: ð13Þ
This approximation makes the problem amenable to analytical

consideration. Arguments in support of this approximation are that
compressibility effects usually play an important role at large
Mach numbers or when wave propagation over large distances is
considered. Both these situations are not characteristic of acoustic
streaming.

From [13], it also follows that in the second-order approxima-
tion with respect to the linear solutions, V obeys the following
equation:

mDV � 1
qf

$P ¼ hðv � $Þv þ vð$ � vÞi; ð14Þ

where P is the time averaged second-order pressure and hi means
time averaging.

Eq. (13) is satisfied if we set

V ¼ $�W: ð15Þ
Substituting (15) into (14) and applying the curl operator, one

obtains

D2W ¼ �1
m
$�W; ð16Þ
where with accuracy up to leading terms W is given by [29]

W ¼ hðvx � $þ vy � $Þðvx þ vyÞi: ð17Þ
Eq. (17) shows that W can be represented as

W ¼ Wxðx; zÞ þWyðy; zÞ þ Uðx; y; zÞ; ð18Þ
where

Wxðx; zÞ ¼ hðvx � $Þvxi;Wyðy; zÞ ¼ hðvy � $Þvyi; ð19Þ
and

Uðx; y; zÞ ¼ hðvx � $Þvy þ ðvy � $Þvxi: ð20Þ
The termsWx andWy describe the acoustic streaming produced

by the x and y waves, respectively, as if the second wave were
absent. The expression for the streaming velocity Vx that is pro-
duced by Wx was derived in our paper [29]. An expression for
the streaming velocity Vy produced by Wy can be written by anal-
ogy, replacing x with y in the expression for V x. Therefore, we can
consider these two contributions as known.

Eq. (20) gives a cross term that arises because the right-hand
side of (14) includes products that are dependent on both x and
y simultaneously. The aim of the calculation that follows is to
derive a streaming velocity that is produced by the cross term.
Let us denote this velocity by V�. It can be represented as

V� ¼ $�W�; ð21Þ
whereW� denotes the vector potential. We will see in Section 3 that
it is the contribution of V� that gives rise to fluid rotation in the xy
planes.

2.3.2. Calculation of V�

Since vx does not depend on y and vy does not depend on x, the
components of U along the coordinate axes are written as follows:

Ux ¼ 1
2
Re v�

yz
@vxx

@z

� �
; ð22Þ

Uy ¼ 1
2
Re vxz

@v�
yy

@z

� �
; ð23Þ

Uz ¼ 1
2
Re

@

@z
vxzv�

yz

� �� �
; ð24Þ

where the asterisk denotes the complex conjugate. We have used
(2) and (3) here.

Let us represent W� as

W� ¼ W1ex þW2ey þW3ez: ð25Þ
Then it follows from (16) that

D2W1 ¼ 1
m

@Uy

@z
� @Uz

@y

� �
; ð26Þ

D2W2 ¼ 1
m

@Uz

@x
� @Ux

@z

� �
; ð27Þ

D2W3 ¼ 1
m

@Ux

@y
� @Uy

@x

� �
: ð28Þ

Substituting (4) and (5) into (22)–(24), then substituting the

results into (26)–(28) and using the fact that k2�v ¼ �k2v , one obtains

D2W1 ¼ 1
m
Re ik2vF1ðzÞ sinðkxþ k�yÞ � sinðkx� k�yÞ½ �

n o
; ð29Þ

D2W2 ¼ 1
m
Re ik2vF2ðzÞ sinðkxþ k�yÞ þ sinðkx� k�yÞ½ �

n o
; ð30Þ
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D2W3 ¼ 1
m
Re ik2vF3ðzÞ cosðkxþ k�yÞ � cosðkx� k�yÞ½ �

n o
; ð31Þ

where the functions FnðzÞ are calculated by

F1ðzÞ ¼ q2
f s1xs

�
4y þ qf q

�
vs3xs

�
2y þ ikqvs2xs

�
4y þ ikq�

vs4xs
�
2y; ð32Þ

F2ðzÞ ¼ ik�qvs2xs
�
4y þ ik�q�

vs4xs
�
2y � q�

f qvs2xs
�
3y � q2�

f s4xs�1y; ð33Þ

F3ðzÞ ¼ k�q�
f s4xs

�
3y � kqf s3xs

�
4y � iðk2 þ k2�Þs4xs�4y: ð34Þ

When deriving these equations, we have used the following
identities:

s=1s ¼ qf s3s; s=2s ¼ qvs4s; s=3s ¼ qf s1s; s=4s ¼ qvs2s; ð35Þ
which follow from (6)–(9), the prime denoting the derivative with
respect to z.

Solutions to (29)–(31) can be sought in the following from:

W1 ¼ 1
m
Re ik2vG1ðzÞ sinðkxþ k�yÞ � sinðkx� k�yÞ½ �

n o
; ð36Þ

W2 ¼ 1
m
Re ik2vG2ðzÞ sinðkxþ k�yÞ þ sinðkx� k�yÞ½ �

n o
; ð37Þ

W3 ¼ 1
m
Re ik2vG3ðzÞ cosðkxþ k�yÞ � cosðkx� k�yÞ½ �

n o
; ð38Þ

where GnðzÞ are sought-for functions. Substitution of (36)–(38) into
(29)–(31) yields

d4Gn

dz4
� 2a2 d

2Gn

dz2
þ a4Gn ¼ FnðzÞ; ð39Þ

where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Refk2g

q
and n = 1, 2, 3. Solutions to (39) are given by

GnðzÞ ¼ wnðzÞ þ ðcn1 þ cn2zÞeaz þ ðcn3 þ cn4zÞe�az; ð40Þ
where wnðzÞ is the particular solution, which arises from the func-
tion FnðzÞ on the right-hand side of (39) and the other two terms
are the homogeneous solutions, in which cnm are constants to be
found.

Let us calculate the particular solution w1ðzÞ to (39) with n = 1.
The structure of F1ðzÞ and the properties of the products snxs�my (see
Appendix A) suggest that w1ðzÞ can be sought in the following
form:

w1ðzÞ ¼ a11s1xs�4y þ a12s3xs�2y þ a13s2xs�4y þ a14s4xs�2y; ð41Þ
where a1m are constants to be found. The derivatives of the products
snxs�my necessary for the calculation of w1ðzÞ are given in Appendix A.
Using them, substituting (41) into (39), and equating terms at the
same products snxs�my on the left- and right-hand sides, one obtains

a11 ¼ q2
f ½ðk2f � k2vÞ

2 þ 4q2
vq

2�
v �

½ðk2f � k2vÞ
2 � 4q2

f q
2�
v �

2 ; ð42Þ

a12 ¼ qf q
�
v ½ðk2f � k2vÞ

2 þ 4q2
f ðk2� þ k2f Þ�

½ðk2f � k2vÞ
2 � 4q2

f q
2�
v �

2 ; ð43Þ

a13 ¼ ik
4qvq2�

v
; ð44Þ

a14 ¼ ik
4q2

vq�
v
: ð45Þ

Expressions for w2ðzÞ and w3ðzÞ are calculated by the same
method. The result is as follows:
w2ðzÞ ¼ a21s4xs�1y þ a22s2xs�3y þ a23s4xs�2y þ a24s2xs�4y; ð46Þ

w3ðzÞ ¼ a31s1xs�2y þ a32s3xs�4y þ a33s2xs�1y þ a34s4xs�3y
þ a35s4xs�4y; ð47Þ

where

a21 ¼ �a�11; a22 ¼ �a�12; a23 ¼ �a�13; a24 ¼ �a�14; ð48Þ

a31 ¼ � 4kq2
f q

�
vðk2f � k2vÞ

ðk2f � k2vÞ
2 � 4q2

f q
2�
v

h i2 ; ð49Þ

a32 ¼ � kqf ½ðk2f � k2vÞ
2 þ 4q2

f q
2�
v �

½ðk2f � k2vÞ
2 � 4q2

f q
2�
v �

2 ; ð50Þ

a33 ¼ �a�31; a34 ¼ �a�32; ð51Þ

a35 ¼ � iðk2 þ k2�Þ
4q2

vq2�
v

: ð52Þ

That (46)–(52) satisfy (39) at n = 2, 3 can be checked by direct
substitution, using the derivatives of snxs�my given in Appendix A.

The functions GnðzÞ contain 12 unknown constants. We can
reduce their number using the fact that $� ð$UÞ � 0, where U is
an arbitrary scalar function. In view of this fact, the velocity field

V� will not change if we replace W� with eW� ¼ W� � $U. Let us
take U in the following form:

U ¼ 1
m
Re

ik2v
a2 ðac31 � c32 þ ac32zÞeaz � ðac33 þ c34 þ ac34zÞe�az½ �

(

�½cosðkxþ k�yÞ � cosðkx� k�yÞ�
�
: ð53Þ

Substitution of (53) into eW� gives modified expressions for
GnðzÞ,
GnðzÞ ¼ wnðzÞ þ ðecn1 þ ecn2zÞeaz þ ðecn3 þ ecn4zÞe�az; n ¼ 1;2; ð54Þ

G3ðzÞ ¼ w3ðzÞ; ð55Þ
where ecnm are new constants. As one can see, we have eliminated
the constants c3m, while the form of G1 and G2 has remained the
same. Therefore, we can drop the tilde and denote the constants
by c1m and c2m as before. Another way of putting it is that (40)
remains valid on condition that c3m ¼ 0.

Calculation of the components of V� gives

V�
x ¼ �1

m
Re ik2v ½G=

2ðzÞ þ k�w3ðzÞ�½sinðkxþ k�yÞ þ sinðkx� k�yÞ�
n o

;

ð56Þ

V�
y ¼ 1

m
Re ik2v ½G=

1ðzÞ þ kw3ðzÞ�½sinðkxþ k�yÞ � sinðkx� k�yÞ�
n o

;

ð57Þ

V�
z ¼ 1

m
Re ik2v ½kG2ðzÞ � k�G1ðzÞ�½cosðkxþ k�yÞ þ cosðkx� k�yÞ�

n o
;

ð58Þ
where the prime denotes the derivative with respect to z. With the

help of the equations in Appendix A, G=
1;2 are calculated as

G=
nðzÞ ¼ w=

nðzÞ þ ½acn1 þ cn2ð1þ azÞ�eaz � ½acn3 � cn4ð1� azÞ�e�az;
n ¼ 1;2; ð59Þ
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w=
1ðzÞ ¼ ða11q�

v þ a12qf Þs1xs�2y þ ða11qf þ a12q�
vÞs3xs�4y þ ða13q�

v

þ a14qvÞs2xs�2y þ ða13qv þ a14q�
vÞs4xs�4y; ð60Þ

w=
2ðzÞ ¼ ða21qv þ a22q�

f Þs2xs�1y þ ða21q�
f þ a22qvÞs4xs�3y þ ða23qv

þ a24q�
vÞs2xs�2y þ ða23q�

v þ a24qvÞs4xs�4y: ð61Þ
To find the constants c1m and c2m, we can use no-slip boundary

conditions for the streaming velocity at the solid wall and at the
reflector. However, these conditions must be applied to the Lagran-
gian streaming velocity [27,31], which is the velocity of fluid par-
ticles specified in the particle coordinates [11]. By definition, the
Lagrangian streaming velocity is the sum of the Eulerian streaming
velocity V� and the Stokes drift velocity [27,31,32]. Therefore, we
have first to calculate the Stokes drift velocity.

2.3.3. Stokes drift velocity
The full Stokes drift velocity is calculated by [11,32]

VS ¼
Z
vdt � rv

	 

¼ 1
x

ðiv � rÞvh i: ð62Þ

The terms produced by the x wave when the y wave is absent
are provided in [29]. The terms produced by the y wave can be cal-
culated by replacing xwith y in the x terms. The cross terms, which
we will use along with V�, are given by

V�
Sx ¼ � 1

2x
Re iv�

yz
@vxx

@z

� �
; ð63Þ

V�
Sy ¼

1
2x

Re ivxz
@v�

yy

@z

� �
; ð64Þ

V�
Sz ¼

1
2x

Re ivxz
@v�

yz

@z
� iv�

yz
@vxz

@z

� �
; ð65Þ

Substitution of (4) and (5) yields

V�
Sx ¼

1
x

Re H1ðzÞ½sinðkxþ k�yÞ þ sinðkx� k�yÞ�f g; ð66Þ

V�
Sy ¼ � 1

x
Re H2ðzÞ½sinðkxþ k�yÞ � sinðkx� k�yÞ�f g; ð67Þ

V�
Sz ¼

1
x

Re H3ðzÞ½cosðkxþ k�yÞ þ cosðkx� k�yÞ�f g; ð68Þ

where

H1ðzÞ ¼ ðikqf s3x � q2
vs4xÞðqf s3y þ iks4yÞ�; ð69Þ

H2ðzÞ ¼ ðqf s3x þ iks4xÞðq2
vs4y � ikqf s3yÞ

�
; ð70Þ

H3ðzÞ ¼ ðkqvs2x � iq2
f s1xÞðqf s3y þ iks4yÞ� þ ðiqf s3x

� ks4xÞðq2
f s1y þ ikqvs2yÞ

�
: ð71Þ
2.3.4. Calculation of cnm
In order to find the unknown constants c1m and c2m appearing in

(40), we use the boundary conditions at the solid wall and at the
reflector. These conditions require that the Lagrangian streaming
velocity V�

L ¼ V� þ V�
S be equal to zero at z = 0 and z = �h

[27,31]. As a result, we obtain the following equations:

G=
2ðzÞ ¼

m
ik2vx

H1ðzÞ � k�w3ðzÞ at z ¼ 0;�h; ð72Þ

G=
1ðzÞ ¼

m
ik2vx

H2ðzÞ � kw3ðzÞ at z ¼ 0;�h; ð73Þ
k�G1ðzÞ � kG2ðzÞ ¼ m
ik2vx

H3ðzÞ at z ¼ 0;�h: ð74Þ

Eq. (72) contains only c2m, (73) contains only c1m, while (74)
contains both c1m and c2m. We can separate c1m and c2m by splitting
(74) into two equations, taking into account the symmetry of the
problem with respect to x and y. As a result, we obtain two inde-
pendent systems of equations, one of which is for the unknowns
c1m,

G=
1ðzÞ ¼

m
ik2vx

H2ðzÞ � kw3ðzÞ at z ¼ 0;�h; ð75aÞ

G1ðzÞ ¼ m
2ik�k2vx

H3ðzÞ at z ¼ 0;�h; ð75bÞ

and the other is for the unknowns c2m,

G=
2ðzÞ ¼

m
ik2vx

H1ðzÞ � k�w3ðzÞ at z ¼ 0;�h; ð76aÞ

G2ðzÞ ¼ � m
2ikk2vx

H3ðzÞ at z ¼ 0;�h: ð76bÞ

Substitution of (40) and (59) into (75a) and (75b) yields the fol-
lowing system of algebraic equations:

a 1 �a 1
ae�ah ð1� ahÞe�ah �aeah ð1þ ahÞeah
1 0 1 0

e�ah �he�ah eah �heah

0BBB@
1CCCA�

c11
c12
c13
c14

0BBB@
1CCCA

¼

m
ik2vx

H2ð0Þ � w=
1ð0Þ � kw3ð0Þ

m
ik2vx

H2ð�hÞ � w=
1ð�hÞ � kw3ð�hÞ

m
2ik�k2vx

H3ð0Þ � w1ð0Þ
m

2ik�k2vx
H3ð�hÞ � w1ð�hÞ

0BBBBBB@

1CCCCCCA:

ð77Þ

The unknowns c1m are calculated by

c1m ¼ D1m

D
; ð78Þ

where D is the determinant of the coefficient matrix of (77) and D1m

is the determinant of the coefficient matrix in which the mth col-
umn is replaced with the column of the free terms.

Substitution of (40) and (59) into (76a) and (76b) shows that
the coefficient matrix remains the same as in (77), while the free
terms are given by

m
ik2vx

H1ð0Þ � w=
2ð0Þ � k�w3ð0Þ

m
ik2vx

H1ð�hÞ � w=
2ð�hÞ � k�w3ð�hÞ

� m
2ikk2vx

H3ð0Þ � w2ð0Þ
� m

2ikk2vx
H3ð�hÞ � w2ð�hÞ

0BBBBBB@

1CCCCCCA: ð79Þ

Therefore, the unknowns c2m are calculated by

c2m ¼ D2m

D
; ð80Þ

where D2m is the determinant of the coefficient matrix of (77) in
which themth column is replaced with the column of the free terms
from (79).

Now that all the constants are calculated, our derivation is com-
plete. To sum up, we have calculated the streaming velocity
V�

L ¼ V� þ V�
S , which is induced by the cross term in the equations

of acoustic streaming; see the end of Section 2.3.1. It should be
remembered that V�

L is only a part of the total Lagrangian stream-
ing velocity, V L, which is produced by two standing waves in the
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channel. In addition to V�
L , VL includes the Lagrangian streaming

velocity produced by the x wave when the y wave is absent, V Lx,
and the Lagrangian streaming velocity produced by the y wave
when the x wave is absent, VLy. In other words, the total acoustic
streaming is given by VL, which is calculated by

V L ¼ V Lx þ V Ly þ V�
L ; ð81Þ

where VLx was calculated in our previous paper [29], VLy is calcu-
lated by replacing x with y in the expression for VLx and V�

L was cal-
culated in the present study.

3. Numerical simulations

In order to reveal the structure of the acoustic streaming,
numerical examples have been considered. The simulations were
made at the following physical parameters: qf ¼ 1000 kg/m3,
cf ¼ 1500 m/s, g ¼ 0:001 Pa s, n ¼ 0:003 Pa s, qs ¼ 4640 kg/m3,
k ¼ 68 GPa, l ¼ 68 GPa and f ¼ x=2p ¼ 36 MHz. Here, qs is the
density of the solid wall and k and l are the Lamé coefficients.
The above parameters were chosen to correspond to typical
Fig. 2. Projections of streamlines of the Lagrangian streaming velocity on xy planes at dif
waves is / ¼ p=2. The fluid is rotating about the z axes perpendicular to the channel bo
parameters of microfluidic devices involving a lithium niobate
(LiNbO3) substrate to generate acoustic waves by interdigitated
transducers (IDTs) [30]. For these parameters, at the channel
height h ¼ 50 mm, the dispersion equation in [29] gives the
wavenumber of the leaky surface wave k ¼ 62860þ 5:64i m�1,
which corresponds to the wave speed c ¼ x=Re½k� ¼ 3598 m/s,
the wavelength ksw ¼ 99:96 mm, and the attenuation coefficient
asw ¼ Im½k� ¼ 5:64 m�1. The viscous penetration depth in the fluid
is dv ¼ 94nm 	 0:002h. It should be emphasized that the streaming
velocity that is calculated in our numerical examples is the Lagran-
gian streaming velocity. Doing so, we follow Westervelt [11] who
pointed out that the velocity of fluid particles involved in acoustic
streaming should be specified in the particle coordinates, i.e., that
should be the Lagrangian streaming velocity.

Fig. 2 shows streamline patterns that are obtained by project-
ing the Lagrangian streaming velocity on xy planes at different val-
ues of z. The channel height is h ¼ 50 mm. The phase lag between
the x and y waves is / ¼ p=2. As one can see, the fluid is rotating
about vertical axes (z axes) perpendicular to the channel bound-
aries. The direction of the rotation changes with varying z. For
ferent values of z. The channel height h is 50 mm. The phase lag between the x and y
undaries.
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example, if we compare the left top quarter of Fig. 2a with that of
Fig. 2b, we see that the rotation changes from clockwise to
counterclockwise.

Calculations reveal that rotation arises not only at / ¼ p=2, but
in all cases that the phase lag is nonzero. This fact is illustrated by
Fig. 3, which shows projections of streamlines on the xy plane at
z ¼ �0:75h for different values of /, the other parameters being
the same as in Fig. 2.

At / ¼ 0, the fluid rotation vanishes. This situation is exempli-
fied by Fig. 4, which shows the same case as in Fig. 2 at / ¼ 0. Cal-
culations also reveal that the rotation is caused by the cross terms
of the streaming, i.e., the components of the velocity field V�. As an
example, Fig. 5 shows what happens to Fig. 2a and b if the cross
terms are eliminated from the calculation. We see that rotation
is absent.

The projections of streamlines in Figs. 2 and 3 look like spirals.
This form is explained by the fact that fluid particles move over
spiral-like trajectories. We will see this below in Figs. 7–9, which
give examples of 3D trajectories of fluid particles.
Fig. 3. Projections of streamlines of the Lagrangian streaming velocity on the xy plane a
Fig. 2. The channel height h is 50 mm. Rotation occurs at all nonzero values of /.
In connection with the fluid rotation described above it is per-
tinent to mention the following point. There are studies that con-
sider the rotation of a spherical microparticle in the field of two
orthogonal standing waves [33,34,30]. They show that, when there
is a nonzero phase shift / between the standing waves, an acoustic
streaming arises around the particle and produces a nonzero vis-
cous torque on the particle, driving it to rotate around its axis of
symmetry. The streaming magnitude is found to be dependent
on sin/. In our study, a different physical problem is considered.
We consider a boundary layer driven streaming, which is caused
by boundary layer effects between an acoustically excited fluid
and the bounding walls of a microfluidic channel. This streaming
gives rise to the rotation of the fluid flow as such. The complicated
mathematical form of the streaming solutions does not allow one
to see the explicit mathematical form of the dependence on /: if
it is sin/ or something different. Therefore, it is difficult to con-
clude if or not there is an analogy with the results reported in
[33,34].

Fig. 6 shows projections of streamlines on the xz plane at
y ¼ ksw=4 for different values of the channel height h. The phase
t z ¼ �0:75h for different values of the phase lag /. The other parameters are as in



Fig. 4. The same case as in Fig. 2 at the phase lag / ¼ 0. The channel height h is 50 mm. Rotation vanishes.
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lag between the x and y waves is / ¼ p=2. Note that the label 1.0
on the vertical axes corresponds to the position of the reflector.
As one can see, the streaming consists of upper and lower parts.
The position of the division plane and the form of streamlines
change with h but the division into upper and lower parts remains
at all h.

Figs. 7–9 are examples of 3D trajectories of fluid particles. The
calculations were performed at the channel height h ¼ 50 mm.
Figs. 7 and 8 exemplify the motion of fluid particles in the upper
part of the channel. They show that fluid particles are rotating
and moving alternately up and down between the reflector and a
horizontal plane that divides the channel at z 	 �0:6h. As one
can see, when a fluid particle is moving up, its rotation radius first
decreases. The ascent of the particle occurs mainly along the axis of
the vortex. Then the rotation radius increases, and when the parti-
cle reaches the edge of the vortex, its motion turns abruptly down.
Fig. 7b explains why the projections of streamlines in Figs. 2 and 3
look like spirals. Figs. 7 and 8 also show that there are relatively
simple trajectories, such as that in Fig. 7, and more complicated
trajectories, such as that in Fig. 8. The trajectory shown in Fig. 7
becomes closed in one up-down pass, while the trajectory in
Fig. 8 does not become closed even after many up-down passes.
We call a trajectory closed if, after a certain number of time steps,
the numerical simulation shows that the fluid particle comes to the
initial point and then moves along the same path. The calculation
of trajectories is sensitive to small deviations in space. If the accu-
racy of the calculation is not sufficient (too large time step), the
observed fluid particle can ‘‘jump” to another trajectory in the pro-
cess of the calculation. Therefore, the calculation of trajectories
requires a particular accuracy and is time-consuming. Animations
of the trajectory shown in Fig. 7 and a part of the trajectory shown
in Fig. 8 are provided as supplementary material.

Fig. 9 is an example of the fluid particle trajectory in the lower
part of the channel. Just as in the upper part, the fluid particle is
rotating and moving up and down. The difference is that the
upward motion occurs at the edge of the vortex and the downward
motion is executed along the axis of the vortex. The trajectory
shown in Fig. 9 is not closed.

Our theory allows one to consider the case that the driving
standing waves are of different magnitudes. This case is illustrated
by Figs. 10–12. Fig. 10 shows how the xy streamline pattern
depicted in Fig. 2a is transformed with varying e, where e denotes



Fig. 5. Examples of calculation without the streaming cross terms. The parameters are as in Fig. 2a and b. The channel height h is 50 mm. Rotation is absent.

Fig. 6. Projections of streamlines of the Lagrangian streaming velocity on the xz plane at y ¼ ksw=4 for different values of the channel height h. The phase lag between the x
and y waves is / ¼ p=2. Division into upper and lower parts is observed.
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Fig. 7. Example of the 3D trajectory of a fluid particle rotating in a vortex in the
upper part of the microfluidic channel. The channel height h is 50 mm. The trajectory
becomes closed in one up-down pass.

Fig. 8. Example of the 3D trajectory of a fluid particle rotating in a vortex in the
upper part of the microfluidic channel. The channel height h is 50 mm. The trajectory
does not become closed even after several up-down passes.

Fig. 9. Example of the 3D trajectory of a fluid particle rotating in a vortex in the
lower part of the microfluidic channel. The trajectory is not closed. The channel
height h is 50 mm.
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the ratio of the magnitude of the y wave to that of the x wave.
Fig. 11 shows the transformation of the xz streamline pattern cal-
culated at y ¼ ksw=4, the parameters being the same as in Fig. 10.
Fig. 11a corresponds to Fig. 6b. A moderate difference between
the magnitudes of the waves does not give rise to noticeable
changes in the xy streamline pattern; cf. Fig. 10a and b. However,
changes in the xz streamline pattern are quite visible; cf. Fig. 11a
and b. As one can see, the fluid rotation does not disappear even
if the difference between the wave magnitudes is quite consider-
able. Fig. 12 shows how the 3D trajectory of a fluid particle
depicted in Fig. 7 is transformed at e ¼ 0:25.

Fig. 13 gives an idea of the amplitude of the streaming velocity.
Let us imagine that we cross the left top vortex in Fig. 2a, going
along the x direction through the vortex center. That is,
y=ksw ¼ 0:25, �0:5 6 x=ksw 6 0 and z ¼ �0:05h. The solid curve in
Fig. 13 shows how the amplitude of the Lagrangian streaming
velocity varies in this case. The other curves show the same for
the other values of z indicated in Fig. 2. The amplitude of the
streaming velocity is proportional to the square of the amplitude



Fig. 10. Projections of streamlines of the Lagrangian streaming velocity on the xy plane at z ¼ �0:05h for different values of e. e is the ratio of the magnitude of the y wave to
that of the x wave. h ¼ 50 mm, / ¼ p=2.
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of excitation. In our case, excitation is the vibration of the solid
wall, which is caused by counter-propagating leaky surface waves.
It is shown in our previous paper [29] that the amplitudes of the
surface waves can be specified in such a way that one can get a
desired magnitude of the vertical displacement of the solid–fluid
interface. Let us denote this quantity by Dz. It is pointed out in lit-
erature that it is difficult to measure experimentally the vibration
of a solid substrate in a microfluidic setup [27]. Fig. 13 was calcu-
lated at Dz ¼ 0:1 nm. We have chosen this value following Van-
neste and Bühler [27] who used this value in their numerical
simulations. As follows from what was said above, the values of
the streaming velocity shown in Fig. 13 can be easily recalculated
for any amplitude of excitation. The form of the curves will remain
unchanged. As Fig. 13 shows, at Dz ¼ 0:1 nm, the maximum ampli-
tude of the streaming velocity is of the order of 0.5 mm/s.
4. Conclusions

A theory has been developed for the modelling of acoustic
streaming in a microfluidic channel confined between an elastic
solid wall and a rigid reflector. The theory assumes that the acous-
tic streaming is generated by two orthogonal ultrasound standing
waves of the same frequency that are created by two pairs of
counter-propagating leaky surface waves induced in the solid wall.
The magnitudes and phases of the standing waves are assumed to
be, in general, different. Full analytical solutions were obtained for
the equations of acoustic streaming in the situation under study.
Particular numerical examples were considered to reveal the struc-
ture of the acoustic streaming. It has been shown that the interac-
tion of the driving standing waves leads to the appearance of a
cross term in the equations of acoustic streaming. If the phase
lag between the standing waves is nonzero, the cross term gives
rise to circular vortices with rotation axes perpendicular to the
solid wall of the channel. The vortices make fluid particles rotate
and move alternately up and down between the solid wall and
the reflector.

The obtained results are of immediate interest for applications
concerning the ultrasonic micromixing of fluids and the manipula-
tion of microparticles in microfluidic devices. Furthermore, the
possibility to induce a preferred direction in the fluid vorticity with



Fig. 11. Projections of streamlines of the Lagrangian streaming velocity on the xz plane at y ¼ ksw=4 for different values of e. e is the ratio of the magnitude of the y wave to
that of the x wave. h ¼ 50 mm, / ¼ p=2.

Fig. 12. Example of the 3D trajectory of a fluid particle at e ¼ 0:25. The other
parameters are as in Fig. 7.

Fig. 13. Amplitude of the Lagrangian streaming velocity as a function of x at
y ¼ ksw=4 for different values of z. h ¼ 50 mm, / ¼ p=2. The amplitude of the vertical
displacement of the solid-fluid interface Dz is 0.1 nm.
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periodic alternate orientation can be of importance for exploiting
properties of anisotropic fluids such as liquid crystals.
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Appendix A. Derivatives of snxs�my

The superscripts // and IV denote the second and the forth
derivatives with respect to z.
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