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Cavitation in a liquid-filled cavity surrounded by an elastic medium: Intercoupling of cavitation
events in neighboring cavities
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The subject of the present theoretical study is the dynamics of a cavitation bubble in a spherical liquid-filled
cavity surrounded by an infinite elastic solid. Two objectives are pursued. The first is to derive equations for the
velocity and pressure fields throughout the liquid filling the cavity and equations for the stress and strain fields
throughout the solid medium surrounding the cavity. This derivation is based on the results of our previous paper
[A. A. Doinikov et al., Phys. Rev. E 97, 013108 (2018)], where equations for the evolution of a bubble inside
a cavity were derived. The second objective is to apply the equations obtained at the first step of the study to
ascertain if the cavitation process in one cavity can trigger the nucleation in a neighboring cavity. To this end,
we consider a neighboring cavity in which a cavitation bubble is absent. We derive equations that describe the
disturbance of the liquid pressure inside the second cavity, assuming this disturbance to be caused by the cavitation
process in the first cavity. The developed theory is then used to perform numerical simulations. The results of
the simulations show that the magnitude of the background negative pressure inside the second cavity increases
at the second half period of the pressure disturbance, which in turn enhances the probability of nucleation in the
second cavity.
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I. INTRODUCTION

Theoretical studies on cavitation phenomena in a micro-
scopic confinement, i.e., in liquid microinclusions inside a
solid medium, have received increased attention relatively
recently. Such situations, however, occur quite often in nature
and technology. Examples can be found in many areas such as
geology [1,2], processes in porous media [3–5], tensiometer
measurements [6], biology [7–10], etc.

Our interest in this research was inspired by cavitation
events that are observed inside trees [9,11–13]. Evaporation
processes result in high negative pressures inside water-filled
tree conduits [6,14,15], which in turn give rise to the nucleation
of cavitation bubbles inside conduits. The bubbles grow,
undergo transient oscillations, and emit acoustic waves in the
ultrasonic range [7,16]. This process has a great influence on
tree physiology [8,10,17,18].

Our previous paper [19] provides a detailed review of
theoretical models developed to describe cavitation inside trees
[6,14,15,20]. In the context of the current research, the most
important point is that none of the above models proposes
equations for the velocity and pressure fields throughout the
liquid and equations for the stress and strain fields throughout
the solid. The only model that describes the propagation of
acoustic waves in the liquid and in the solid is that of Drysdale
et al. [21]. However, they use a linear approximation that is
valid only at the final stage of the bubble evolution, when
the cavitation bubble in the process of growth reaches a final
equilibrium radius and undergoes small-amplitude oscillations
about this radius.

None of the available models, including that of Drysdale
et al. [21], considers the intercoupling of cavitation events in
neighboring cavities. All of them are restricted to the analysis

of the bubble dynamics in a single cavity. They do not consider
the wave propagation throughout the solid (see the clause about
Ref. [21] above) and hence their results cannot be used to gain
an insight into how the cavitation process in one cavity affects
a cavitation event in a neighboring cavity.

The above-stated unsolved problems defined the aims of
our study. In our previous paper [19], we derived equations for
the growth and the oscillation of a cavitation bubble in a single
spherical cavity filled with a liquid and enclosed in an infinite
elastic medium. These equations allow one to calculate the
variation of the bubble and the cavity radii from a moment that
an initial cavitation microbubble appears in the cavity up to a
moment that the bubble reaches a final equilibrium radius and
undergoes a damped oscillation about this radius. In the present
study, we use these results in order to derive equations for the
velocity and pressure fields throughout the liquid filling the
cavity and equations for the stress and strain fields throughout
the solid medium surrounding the cavity. Then, we use the
above equations in order to get a notion of how the cavitation
process in the cavity affects the possibility of nucleation in a
neighboring cavity.

II. THEORETICAL CALCULATIONS

The object of our interest is a cavitation bubble in a spherical
cavity filled with a compressible viscous liquid and surrounded
by an infinite elastic solid; see Fig. 1. It is assumed that the
bubble arises due to a high initial negative pressure in the liquid.
The bubble then grows and undergoes a damped oscillation
until its radius reaches an equilibrium value. The bubble growth
leads to the relaxation of the pressure in the liquid and the
stress in the solid. The bubble oscillation generates acoustic
waves, which propagate through the liquid, penetrate into the

2470-0045/2018/98(1)/013108(10) 013108-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.98.013108&domain=pdf&date_stamp=2018-07-27
https://doi.org/10.1103/PhysRevE.97.013108
https://doi.org/10.1103/PhysRevE.97.013108
https://doi.org/10.1103/PhysRevE.97.013108
https://doi.org/10.1103/PhysRevE.97.013108
https://doi.org/10.1103/PhysRevE.98.013108


DOINIKOV, DOLLET, AND MARMOTTANT PHYSICAL REVIEW E 98, 013108 (2018)

Rc

Rb

Pl0 < 0

Solid

Liquid

Bubble

FIG. 1. Geometry of the system under study. A cavitation bubble
arises in a liquid-filled cavity due to a high initial negative pressure Pl0

in the liquid. The bubble grows and undergoes a damped oscillation
until its radius reaches an equilibrium value. The bubble growth leads
to the relaxation of the pressure in the liquid and the stress in the solid.
The bubble oscillation generates acoustic waves, which propagate
through the liquid, penetrate into the solid, and go away.

solid, and go away. The purpose of Sec. II A is to derive
equations for the motion that is produced by the relaxation
process and the acoustic waves throughout the liquid and the
solid. In Sec. II B, we assume that there is a neighboring cavity
in which a cavitation bubble is absent. We derive equations
that describe the disturbance of the liquid pressure inside the
second cavity, assuming this disturbance to be caused by the
cavitation process in the first cavity. We use these equations in
order to understand how the cavitation process in one cavity
can trigger the nucleation in a neighboring cavity. In Sec. III,
results of numerical calculations are demonstrated.

A. Equations for a cavity with a bubble

1. Evolution of a cavitation bubble

According to the theory developed in Ref. [19], the evolu-
tion of a cavitation bubble in a liquid-filled cavity enclosed in
an elastic solid is governed by the following equations:
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where Rb and Rc are the time-varying radii of the bubble and
the cavity, respectively; ρl0 is the equilibrium liquid density;
c is the speed of sound in the liquid; ηl is the liquid shear
viscosity; σl is the surface tension; Pb is the pressure within the
bubble; τrr (Rc, t ) is the normal stress in the solid at the cavity
surface; λ and μ are the Lamé coefficients; P∞ is the pressure
at infinity; Rc0 = Rc(0) is the initial radius of the cavity; Pl0 is
the initial negative pressure in the liquid; cs = √

(λ + 2μ)/ρs

is the longitudinal wave speed in the solid; ρs is the equilibrium
density of the solid; and the overdot denotes the time derivative.

Equation (1) describes the time evolution of the bubble
radius Rb, Eq. (2) sets a relation between Rb and Rc, and
Eqs. (3)–(6) show how to calculate the quantity τrr (Rc, t ) on
the right-hand side of Eq. (1). Note that Eq. (2) appears as
if it were derived for an incompressible liquid. However, it
was shown in Ref. [19] that this equation remains valid for a
compressible liquid as well if we keep to the first order in 1/c

because the liquid compressibility manifests itself only in the
order 1/c2.

2. Velocity and pressure fields in the liquid

The theory developed in Ref. [19] gives the following
equations for the velocity and the normal stress in the liquid:

v(r, t ) = f (t − r/c) + g(t + r/c)

r2

+ f ′(t − r/c) − g′(t + r/c)

cr
, (7)

σrr (r, t ) = −ρl0

r
[f ′(t − r/c) + g′(t + r/c)]

+ ρl0

2
v2(r, t ) − 4ηl

r
v(r, t ), (8)

where r is the radial coordinate measured from the center of
the cavity and the prime denotes the derivative with respect to
the argument in brackets.

The derivation performed in Ref. [19] did not require
the calculation of the functions f (t − r/c) and g(t + r/c) at
arbitrary r . Expressions for the above functions at the surfaces
of the bubble and the cavity were only necessary. However,
the calculation of the velocity and pressure fields throughout
the liquid requires a knowledge of f (t − r/c) and g(t + r/c)
at arbitrary r .
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To evaluate f (t − r/c) and g(t + r/c), let us expand them
into a Taylor series as follows:
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c
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c
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)
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These equations express f (t − r/c) and g(t + r/c) in terms
of their values at the surface of the bubble.

Substitution of Eqs. (9) and (10) into Eq. (7) yields

v(r, t ) = f (t − Rb/c) + g(t + Rb/c)

r2
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cr2
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Expanding Eq. (11) into a Taylor series in terms of Rb/c,
one obtains

v(r, t ) = f (t ) + g(t )

r2
+ O

(
1

c2

)
. (12)

Equation (12) shows that terms of the order 1/c are absent
from the expansion of the liquid velocity in a Taylor series.
This means that, with an accuracy up to 1/c, the liquid velocity
in a compressible liquid is given by the same expression as in
an incompressible liquid.

From the boundary condition
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one gets
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so the velocity is given by
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Expanding f ′(t − r/c) and g′(t + r/c) into a Taylor series
similar to Eqs. (9) and (10) and substituting them into Eq. (8),
one obtains
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Let us apply the boundary conditions for σrr (r, t ) [19],
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From these equations, it follows that
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Substitution of Eqs. (15), (21), and (22) into Eq. (16) yields
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bṘb

r3

+ (r − Rb )Rc

r (Rc − Rb )

[
τrr (Rc, t ) + RbPb

Rc

− 2σl

Rc

+ ρl0
(
RbṘ
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The liquid pressure, with an accuracy up to 1/c, is given by
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r
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Substituting Eq. (23) into Eq. (24), one obtains
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2
b

2
− 4ηlṘb
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To sum up, the velocity and the pressure fields in the liquid at
any values of r are given by Eqs. (15) and (25). These equations
involve the quantities Rb, Rc, and τrr (Rc, t ). The equations
for these quantities, derived in our previous paper [19], are
provided in Sec. II A 1.

It should be noted that Eqs. (15) and (25) look as if the
liquid were assumed incompressible. This result follows from
the fact that the Taylor expansions for the liquid velocity and
the liquid pressure do not involve terms of the order 1/c. For
a gas bubble in an infinite liquid, this mathematical fact was
first pointed out by Gilmore [22]. Our derivation shows that in
the case of a bubble in a cavity, a similar mathematical effect
occurs. Thus, one can state that, with an accuracy up to 1/c,
both incompressible and compressible liquid models lead to
the same expressions for the velocity and the pressure, while
compressibility corrections appear only through the equations
for Rb, Rc, and τrr (Rc, t ).

3. Stress and strain fields in the solid

In Ref. [19], the following equation for the stress in the solid
was derived:

τrr (r, t ) = −P∞ − 4μ

[
s(t − r/cs )

r3
+ s ′(t − r/cs )

csr2

]

− (λ + 2μ)s ′′(t − r/cs )
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As with the liquid, we need to evaluate s(t − r/cs ) and its
derivatives at arbitrary r .

Let us expand s(t − r/cs ) into a Taylor series as follows:
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This equation expresses s(t − r/cs ) through its value and
the values of its derivatives that are calculated at the surface of
the cavity.

Expanding s ′(t − r/cs ) and s ′′(t − r/cs ) by the same way
and substituting them along with Eq. (27) into Eq. (26), one
obtains, with an accuracy up to 1/c2

s ,
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Let us use relations between s(t − Rc/cs ) and its derivatives
derived in Ref. [19],
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where u(Rc, t ) denotes the displacement of the cavity surface,
given by
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see Ref. [19].
Substitution of Eqs. (29) and (30) into Eq. (28) yields
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Setting r = Rc in Eq. (32), one can represent s ′(t − Rc/cs )
as
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Finally, substituting Eq. (31) into Eq. (34), after some
rearrangement, one obtains
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c
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)
. (35)

This equation expresses the stress in the solid at any r

through the values of the stress at r = Rc, τrr (Rc, t ), which
can be calculated using the results of our previous paper [19].

A similar derivation allows one to find the strain (displace-
ment) field u(r, t ) throughout the solid.

In Ref. [19], the following equation for u(r, t ) was derived:

u(r, t ) = − P∞r

3λ + 2μ
+ s(t − r/cs )

r2
+ s ′(t − r/cs )

csr
. (36)

Substituting Eq. (27) for s(t − r/cs ) and a similar expansion
for s ′(t − r/cs ), one obtains, with accuracy up to 1/c2

s ,
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Substitution of Eqs. (29) and (30) gives

u(r, t ) = − P∞r

3λ + 2μ

(
1 − R3

c

r3

)
− RcṘc

2cs
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1 − R2

c
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(38)

Finally, eliminating s ′(t − Rc/cs ) by Eq. (33), one gets

u(r, t ) = − P∞
3λ + 2μ

(
r − 3Rc

2
+ R3

c

2r2

)

+ u(Rc, t )

λ + 2μ

(
2μ + λR2
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(
1 − R2

c

r2

)
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Equation (39) reveals a limitation of the assumption, made
in Ref. [19], that the length of the solid is infinite. According
to Eq. (39), the displacement at infinity is infinite. This occurs
for the following reason. The displacement of a solid is caused
by a force that acts on the surface of the solid. The force is
calculated as a product of surface area and pressure. In our
case of a spherical solid medium, the surface area at infinity
is infinite so the force is infinite and hence the displacement
is infinite. A similar problem arises when the deformation of
a hollow spherical ball is calculated; see Task 2 of Sec. 7 in
Ref. [23]. Note, however, that the strain rate, ∂u/∂t , calculated
by Eq. (39), is finite.

To sum up, the procedure of the calculation of the stress
and the strain at any values of r is the following. We first
calculate Rb and Rc by the equations derived in Ref. [19] and
provided in Sec. II A 1. Using the obtained results, we calculate
u(Rc, t ) from Eq. (31) and τrr (Rc, t ) from Eqs. (3)–(6). Then
we calculate τrr (r, t ) and u(r, t ) from Eqs. (35) and (39).

B. Equations for a cavity without a bubble

Let us assume that there is another cavity in which a
cavitation bubble is yet absent. In what follows, the parameters
of the first cavity, which contains a bubble, will be denoted by
r1, Rc1, and Rc10, while the parameters of the second cavity
will be denoted by r2, Rc2, and Rc20; see Fig. 2.

FIG. 2. Two cavities with a separation distance d between their
centers. The second (right) cavity does not contain a cavitation bubble
and is kept at rest until the disturbance wave from the first (left) cavity
reaches it.

Our aim is to calculate the disturbance of the liquid pressure
inside the second cavity that is caused by the cavitation process
in the first cavity. This knowledge will give an insight into
how cavitation in one cavity can trigger the nucleation in a
neighboring cavity. We assume that the second cavity is at rest
until the disturbance from the first cavity reaches it. With this
assumption, we can neglect the influence of the second cavity
on the dynamics of the first cavity.

We consider the motion of the liquid in the second cavity in
the linear approximation. Numerical calculations presented in
Sec. III show that the amplitude of the waves emitted by the first
cavity decreases quickly with distance. Therefore, when the
disturbance reaches the second cavity, its intensity is relatively
low and hence the linear approximation is justified. In this case,
the liquid motion inside the second cavity is governed by the
following equations [24]:

∂ρl2

∂t
+ρl20∇ · v2 = 0, (40)

ρl20
∂v2

∂t
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(
ζl + 1

3
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)
∇(∇ · v2) = −∇p2, (41)

p2 = c2(ρl2 − ρl20), (42)

where ρl2 and ρl20 are the time-varying liquid density and the
liquid density at rest, respectively; v2 is the liquid velocity;
ηl and ζl are the shear viscosity and the bulk viscosity,
respectively; p2 is the disturbed liquid pressure; and c is the
speed of sound. Note that the values of ηl , ζl , and c are assumed
to be the same as in the first cavity; i.e., we assume the liquids
in both cavities to be identical.

In the case under study, the liquid motion is spherically
symmetric and hence irrotational [24]. The velocity of an
irrotational flow can be written in terms of a velocity potential,
ϕ2, as

v2 = v2(r2, t )er2 = ∇ϕ2(r2, t ) = ∂ϕ2

∂r2
er2, (43)

where er2 is the unit vector along the radial coordinate r2. On
substitution of Eq. (43), Eqs. (40)–(42) can be recast to

�ϕ2 + 1

c2ρl20

(
ζl + 4

3
ηl

)
∂�ϕ2

∂t
− 1

c2

∂2ϕ2

∂t2
= 0, (44)

p2(r2, t ) = −ρl20
∂ϕ2

∂t
+

(
ζl + 4

3
ηl

)
�ϕ2. (45)

To solve Eq. (44), we use the Fourier transform method
[25]. The Fourier transform of ϕ2(r2, t ) is defined by

ϕ̂2(r2, ω) =
∫ +∞

−∞
ϕ2(r2, t )e−iωtdt. (46)

Calculation of the Fourier transform of Eq. (44) yields

1

r2
2

∂

∂r2

(
r2

2
∂ϕ̂2

∂r2

)
+ k2(ω)ϕ̂2 = 0, (47)

where k(ω) is given by

k(ω) = ω

c

[
1 + iω

c2ρl20

(
ζl + 4

3
ηl

)]−1/2

. (48)
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Equation (47) is known as the spherical Bessel differential
equation of zero order [25,26]. Its solution is given by

ϕ̂2(r2, ω) = A(ω)j0[k(ω)r2], (49)

where A(ω) is an arbitrary function and j0(x) is the spherical
Bessel function of zero order [25,26]. Note that Eq. (49)
satisfies the condition that the solution must be finite at r2 = 0.

It follows from Eqs. (43) and (46) that the Fourier transform
of v2(r2, t ) is calculated by

v̂2(r2, ω) = ∂ϕ̂2

∂r2
= −k(ω)A(ω)j1[k(ω)r2]. (50)

The Fourier transform of p2(r2, t ), making use of Eqs. (47)
and (49), is given by

p̂2(r2, ω) = −A(ω)j0[k(ω)r2]

[
iωρl20 +

(
ζl + 4

3
ηl

)
k2(ω)

]
.

(51)

In order to find A(ω), we apply the boundary conditions at
the surface of the second cavity,

v2(r2, t ) = ∂u2(r2, t )

∂t
at r2 = Rc20, (52)

σ (2)
rr (r2, t ) = τ (1)

rr (r1, t ) + τ (2)
rr (r2, t ) at r2 = Rc20, (53)

where Rc20 is the equilibrium radius of the second cavity, u2 is
the displacement produced in the solid by the oscillation of the
second cavity, σ (2)

rr is the liquid normal stress inside the second
cavity, and τ (1)

rr and τ (2)
rr are the normal stresses produced in

the solid by the first and the second cavities, respectively.
The derivation, as such, carried out in this section is

valid at any separations between the cavities. However, when
calculating τ (1)

rr , we will assume that d � Rc10, Rc20. In this
case, the value of τ (1)

rr at the surface of the second cavity can
be approximately calculated by Eq. (35) at r1 = d.

The liquid normal stress in the second cavity is calculated
by [24]

σ (2)
rr (r2, t ) = −p2 + 2ηl

∂2ϕ2

∂r2
2

+
(

ζl − 2

3
ηl

)
�ϕ2. (54)

By using Eqs. (47), (49), and (51), the Fourier transform of
Eq. (54) is defined as

σ̂ (2)
rr (r2, ω) = A(ω)

{
iωρl20j0[k(ω)r2]

+ 4ηl

3
k2(ω)[j0[k(ω)r2] + j2[k(ω)r2]]

}
. (55)

Here, we have also used the recurrence formulas for the
functions jn(x) [26].

To calculate the Fourier transforms of u2 and τ (2)
rr , we use

the results of our previous paper [19]. According to Eqs. (13)
and (15) of Ref. [19], we can write

u2(r2, t ) = ar2

3
+ s2(t − r2/cs )

r2
2

+ s
/

2 (t − r2/cs )

csr2
, (56)

τ (2)
rr (r2, t ) =

(
λ + 2μ

3

)
a − 4μ

×
[

s2(t − r2/cs )

r3
2

+ s
/

2 (t − r2/cs )

csr
2
2

]

− (λ + 2μ)s//

2 (t − r2/cs )

c2
s r2

, (57)

where s2(t − r2/cs ) is an unknown function to be determined
by the boundary conditions at the cavity surface and a is a
constant to be determined by the boundary condition at infinity.
For r1,2 → ∞, τ (2)

rr +τ (1)
rr → −P∞, which brings a = 0.

The Fourier transforms of Eqs. (56) and (57), with a = 0,
are calculated by

û2(r2, ω) = e−iωr2/cs ŝ2(ω)

(
1

r2
2

+ iω

csr2

)
, (58)

τ̂ (2)
rr (r2, ω) = e−iωr2/cs ŝ2(ω)

[
(λ + 2μ)ω2

c2
s r2

− 4μ

r3
2

− 4iμω

csr
2
2

]
,

(59)

where ŝ2(ω) denotes the Fourier transform of s2(t ).
Finally, the Fourier transform of τ (1)

rr , denoted by τ̂ (1)
rr (r1, ω),

is calculated by analogy with Eq. (46), using Eq. (35) for τ (1)
rr .

Let us now apply the Fourier transform to Eqs. (52) and
(53). The result is

v̂2(Rc20, ω) = iωû2(Rc20, ω), (60)

σ̂ (2)
rr (Rc20, ω) = τ̂ (1)

rr (d, ω) + τ̂ (2)
rr (Rc20, ω). (61)

Substituting Eqs. (50), (55), (58), and (59) into Eqs. (60)
and (61), we obtain expressions for A(ω) and ŝ2(ω) in terms
of τ̂ (1)

rr (d, ω),

A(ω) = a2τ̂
(1)
rr (d, ω)

a2a3 − a1a4
, (62)

ŝ2(ω) = a1τ̂
(1)
rr (d, ω)

a1a4 − a2a3
, (63)

where

a1 = ik(ω)

ω
j1[k(ω)Rc20], (64)

a2 = −e−iωRc20/cs

(
1

R2
c20

+ iω

csRc20

)
, (65)

a3 = iωρl20j0[k(ω)Rc20] + 4ηl

3
k2(ω){j0[k(ω)Rc20]

+ j2[k(ω)Rc20]}, (66)

a4 = e−iωRc20/cs

[
4μ

R3
c20

+ 4iμω

csR
2
c20

− (λ + 2μ)ω2

c2
s Rc20

]
. (67)

Now that we know A(ω), we can calculate the liquid
pressure inside the second cavity at any values of r2 by applying

013108-6



CAVITATION IN A LIQUID-FILLED CAVITY … PHYSICAL REVIEW E 98, 013108 (2018)

FIG. 3. Liquid pressure as a function of time at different spatial
points.

the inverse Fourier transform to Eq. (51),

p2(r2, t ) = 1

2π

∫ +∞

−∞
p̂2(r2, ω)eiωtdω. (68)

III. NUMERICAL CALCULATIONS

Numerical calculations were performed at the following
values of the physical parameters: ρl0 = 998 kg/m3, c = 1484
m/s, ηl = 0.001 Pa s, σl = 0.0725 N/m, ρs = 1233 kg/m3,
μ = 0.74 GPa, cs = 2111 m/s, and P∞ = 101.3 kPa. The
parameters of the liquid correspond to water. The parameters
of the solid medium were adopted from the paper of Drysdale
et al. [21]. They correspond to cavitation experiments on trans-
parent biomimetic wood [6,14,15]. It was assumed that there
was a vacuum inside the bubbles (Pb = 0). An explanation as
to why this assumption is relevant is provided in Ref. [21].
In brief, this assumption corresponds to conditions that take
place in the case of our main interest, namely, in the case of
cavitation events inside trees.

In order to gain an insight into the pressure behavior in the
liquid and the stress behavior in the solid, calculations were
first made for a single cavity, setting Rc0 = 100 μm and Pl0 =
−20 MPa. The results obtained are presented in Figs. 3–7.

Figure 3 illustrates the time behavior of the pressure at
different spatial points within the liquid layer. As one can see,
the pressure at the bubble wall drops instantaneously to zero
as soon as the bubble appears because a vacuum is assumed
to be inside the bubble, while the pressure inside the liquid
oscillates in response to the oscillation of the bubble.

Figure 4 shows the spatial distribution of the pressure in the
liquid layer for different time moments. At t = 0, the pressure
is the same throughout the liquid. When the bubble appears,
a strong pressure difference arises between the bubble wall
and the cavity surface. This difference is smoothed in time and
eventually, when the bubble size reaches an equilibrium value,
the pressure again becomes uniform throughout the liquid. For
t → ∞, the pressure tends to −5.3 kPa throughout the liquid.
At this value, as follows from our calculations, an equilibrium
is established between the size reached by the bubble in the
process of growth, the pressure in the liquid, and the residual
stress in the solid. More information on this point can be found
in our previous paper [19].
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FIG. 4. Spatial distribution of the pressure in the liquid between
Rb and Rc for different time moments. For t → ∞, the pressure tends
to −5.3 kPa throughout the liquid.

Figure 5 illustrates the time behavior of the normal stress in
the solid at different spatial points. As one can see, the stress
oscillates and its amplitude decays within a short distance from
the cavity surface.

Figure 6 shows the spatial distribution of the stress in the
solid for different time moments. It confirms that the stress
decays within a short distance from the cavity surface and
decreases quickly with time. Note the curve at t = 0. It shows
that the main decrease in the initial stress distribution occurs
within a distance of the cavity diameter from the cavity surface.

FIG. 5. Stress in the solid as a function of time at different spatial
points. The stress at r = Rc is shown in the separate plot because of
a great difference in magnitude.
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FIG. 6. Spatial distribution of the stress in the solid for different
time moments. For r → ∞, the stress tends to −P∞ = −101.3 kPa.
The stress at t = 100 μs is shown in a separate plot because of a great
difference in magnitude.

Finally, Fig. 7 demonstrates peak positive and negative
values of the stress in the solid as a function of the distance
from the cavity surface. It also shows that the stress undergoes
a considerable gradient only near the cavity surface. The
upper curve in Fig. 7 is of special interest because it allows
one to estimate the peak negative pressure that is created
inside neighboring cavities due to the cavitation process in the
cavity under consideration. This problem is considered below.
Equation (35) shows that the spatial dependence of the stress in
the solid is given by the terms 1/r and 1/r3. This fact suggests
that the upper curve in Fig. 7 should have the same spatial

2 4 6 8 10
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15

20

Pe
ak

 st
re

ss
 in

 so
lid

 (M
Pa

)

r R/ c

FIG. 7. Peak positive and negative values of the stress in the solid
as a function of the distance from the cavity surface. The dashed curve
shows the best fit to the upper curve, which is given by Eq. (69).

FIG. 8. Disturbance of the liquid pressure at the center of the
second cavity at different radii of the second cavity. Rc10 = 100 μm,
d = 500 μm. The solid curves show the pressure at the center of the
second cavity. The dashed curves show the pressure that is produced
at the surface of the second cavity by the emitted wave from the first
cavity. The second half period of the pressure disturbance can trigger
the nucleation in the second cavity, increasing the magnitude of the
background negative pressure within the second cavity.

dependence. Considering that the peak positive stress at the
cavity surface is equal to −Pl0, the spatial behavior of the
upper curve in Fig. 7 can be approximated by the following
equation:

τ+(r ) = −Pl0
R3

c0

r3
+ CPl0

(
R3

c0

r3
− Rc0

r

)
, (69)

where C is a constant that can be found by fitting the upper
curve in Fig. 7. Equation (69) gives the best fit to the upper
curve in Fig. 7 at C = 0.0566. This fit is shown by the dashed
curve.

Figures 8–10 present results obtained by the theory devel-
oped in Sec. II B. Figure 8 shows the disturbance of the liquid
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FIG. 9. The time position of the first negative peak of the pressure
disturbance at the center of the second cavity as a function of the
equilibrium radius of the first cavity Rc10 for different values of the
initial negative pressure within the first cavity Pl01. Rc20 = 50 μm,
d = 500 μm.

pressure at the center of the second cavity (r2 = 0) that is
caused by the cavitation process in the first cavity. It is assumed
that Rc10 = 100 μm and d = 500 μm. The radius of the second
cavity, Rc20, is varied. The solid curves show the pressure at
the center of the second cavity. For comparison, the dashed
curves show the pressure that is produced at the surface of the
second cavity by the emitted wave from the first cavity. As one
can see, the pressure amplitude inside the second cavity is not
considerably different from that on the cavity surface. As the
radius of the second cavity is reduced, the amplitude of the
internal pressure decreases. However, the calculations show
that the internal pressure practically stops decreasing when
Rc20 becomes smaller than 50 µm. The maximum negative
pressure is always reached during the second half period of the
pressure disturbance. The magnitude of this pressure decreases
with the distance between the cavities, as it must, because the
amplitude of the wave produced by the first cavity decays with
distance; see Fig. 7.

There is a point to be discussed. We set Rc10/d = 0.2. For-
mally, this value is not much smaller than unity. Nevertheless,

FIG. 10. The ratio of the time position of the first negative peak to
the period of the fundamental frequency component of the disturbance
wave produced by the first cavity. The parameters are as in Fig. 9.

this value still is relatively small so one can expect that the
expressions derived in Sec. II B remain dominant at this value
and hence have a governing effect on the situation. Therefore,
one can expect that the predictions presented in Fig. 8 are
correct at least qualitatively. Quantitatively, it is reasonable
to expect that they show a correct order of the represented
quantities, especially if we take into consideration that an
increase in the separation distance only changes the amplitude
of the pressure disturbance, changing nothing in the qualitative
sense.

It is interesting to consider the results presented in Fig. 8
in the context of experimental data reported by Wheeler
and Stroock [27]. In their paper, a microfluidic system is
described that was developed to imitate the main attributes
of transpiration in plants. This system, called “synthetic tree”
formed a microfluidic network of liquid-filled voids in a
synthetic hydrogel. Wheeler and Stroock [27] measured the
probability of cavitation as a function of negative pressure
in the voids; see Fig. 2 in their paper. They found that the
probability increased sharply when the pressure dropped below
−20 MPa. Considering these observations, let us assume that
the background negative pressure within the second cavity is
slightly above−20 MPa. Then it follows from Fig. 8 that during
the second half period of the pressure disturbance, the total
negative pressure within the second cavity may drop below
−20 MPa, which in turn may trigger the nucleation in the
second cavity. It is also interesting to note that the nucleation
is predicted to occur with a time delay with respect to the
cavitation process in the first cavity. This delay is determined
by the fact that the nucleation is triggered by the second half
period of the pressure disturbance rather than by the time of
wave propagation between the cavities. This latter is negligible
as the sound wavelength is large compared to the distance
between the cavities.

The time position of the first negative peak, which will be
denoted by Tnp, can be used as measure of the nucleation delay.
Tnp is determined by the oscillation frequency of the wave
emitted by the first cavity. It was shown in Ref. [19] that this
frequency depends on the cavity radius, Rc10, and the initial
negative pressure within the cavity, Pl01. To give an insight
into this problem, Fig. 9 shows the time position of the first
negative peak as a function of Rc10 for three values of Pl01. It
is assumed that Rc20 = 50 μm and d = 500 μm. As one can
see, Tnp, and hence the delay of the nucleation in the second
cavity with respect to the cavitation process in the first cavity
increases with increasing Rc10 and decreasing Pl01.

Finally, Fig. 10 shows the ratio Tnp/Tfun as a function of
Rc10, where Tfun is the period of the fundamental frequency
component of the disturbance wave produced by the first cavity.
As one can see, this ratio changes in relatively narrow limits
with changing Rc10. One can expect that in experiments, an
average delay of about 0.635Tfun should be observed.

IV. CONCLUSION

The subject of this study is the dynamics of a cavitation
bubble in a spherical liquid-filled cavity surrounded by an
infinite elastic solid. Two objectives have been pursued. The
first was to derive equations for the velocity and pressure
fields throughout the liquid filling the cavity and equations
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for the stress and strain fields throughout the solid medium
surrounding the cavity. The second objective was to apply the
above equations to ascertain if the cavitation process in one
cavity can trigger the nucleation in a neighboring cavity. To this
end, a second cavity without a bubble was considered. Equa-
tions were derived to calculate the disturbance of the liquid
pressure within the second cavity, assuming this disturbance
to be caused by the cavitation process in the first cavity.

In order to analyze the pressure behavior within the liquid
and the stress behavior within the solid, numerical calculations
have been first performed for a single cavity. It has been
shown that initially the pressure is the same throughout the
liquid. When a cavitation bubble appears, a strong pressure
difference arises between the bubble wall and the cavity
surface. This difference is smoothed in time and eventually,
when the bubble radius reaches an equilibrium value, the
pressure again becomes uniform throughout the liquid. For
the normal stress in the solid, it was found that the main drop
in the initial stress distribution occurs within a distance of the
cavity diameter from the cavity surface. The stress oscillates

due to the oscillation of the cavity surface and the amplitude
of the stress oscillation decreases quickly with time and with
the distance from the cavity surface.

A second cavity without a bubble has been then included
in numerical calculations. The pressure disturbance produced
by the emitted wave from the first cavity at the center of the
second cavity was calculated for different radii of the second
cavity. It was shown that during the second half period of
the pressure disturbance, the magnitude of the background
negative pressure within the second cavity was increased.
According to experimental results reported in Ref. [26], the
above effect can trigger the nucleation in the second cavity.
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