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Nonlinear dynamics of two coupled bubbles oscillating inside a liquid-filled cavity surrounded
by an elastic medium
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A theory is developed to model the nonlinear dynamics of two coupled bubbles inside a spherical liquid-filled
cavity surrounded by an elastic medium. The aim is to study how the conditions of full confinement affect the
coupled oscillations of the bubbles. To make the problem amenable to analytical consideration, the bubbles are
assumed to be located on a diameter of the cavity, which makes the problem axisymmetric. Equations for the
pulsation and translation motion of the bubbles are derived by the Lagrangian formalism. The derived equations
are used in numerical simulations. The behavior of two bubbles in a cavity is compared with the behavior of
the same bubbles in an unbounded liquid. It is found that both forced and free oscillations of two bubbles in a
cavity occur differently than those in an unbounded liquid. In particular, it is shown that the eigenfrequencies of
a two-bubble system in a cavity are different from those in an unbounded liquid.
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I. INTRODUCTION

Interest in bubble dynamics that occurs inside a liquid
microinclusion enclosed in a solid medium is motivated by
applications in geology [1,2], dynamics of porous media
[3–5], biology [6–10], etc.

There are a number of theoretical studies on the dynamics
of a single bubble in a spherical liquid-filled cavity sur-
rounded by an infinite elastic solid [11–16]. In particular, it
has been shown in Refs. [13,14,16] that the finite-amplitude
pulsation of a single bubble in a spherical cavity is governed
by a Rayleigh-Plesset-like equation. There are differences in
equations derived in these works, which result from different
approximations that were used to model the behavior of the
elastic surrounding medium. The most rigorous derivation
was performed in Ref. [16]. The effect of confinement in
all the equations is expressed in terms of the time-varying
radius of the cavity. Therefore, all the equations reduce to
the Rayleigh-Plesset equation when the cavity radius tends
to infinity. It has been shown in Refs. [15,16] that the reso-
nance frequency of the system (a cavity with a bubble inside)
decreases with decreasing bubble radius, in contrast to what
occurs in an unbounded liquid, where the resonance frequency
of a bubble increases with decreasing bubble radius. This re-
sult is explained by the fact that the dynamics of the system is
governed by the solid environment rather than by the bubble.
This theoretical prediction is in agreement with experimental
observations of Vincent et al. [12]. The dependence of the
resonance frequency on the material parameters of the system,
such as the modulus of rigidity of the solid, is not trivial and
therefore cannot be described in brief. A detailed analysis of
the behavior of the resonance frequency in various limiting
cases was performed by Drysdale et al. [15]. As an interesting
result, it should be mentioned that the resonance frequency
does not become zero when the modulus of rigidity tends to
infinity.

In nature and technology, the presence of more than one
bubble in a cavity is a more general case than the presence
of a single bubble. Therefore, a theoretical model that would
describe the behavior of two coupled bubbles inside a cavity
could be the next step in studying cavitation phenomena that
occur under the conditions of microscopic confinement.

The dynamics of two interacting bubbles is a classical
problem whose history goes back to the works of C. A.
Bjerknes and his son V. F. K. Bjerknes [17]. Reviews on this
problem can be found in Refs. [18–26]. The influence of two
bubbles on the oscillations of each other is pointed out in
the literature to lead to two main effects. First, the bubbles
undergo attraction or repulsion depending on the value of the
driving frequency with the respect to the natural frequencies
of the bubbles. Second, the natural frequencies of the bubbles
change in comparison with the natural frequencies that the
bubbles have when they are separated in space. As a result,
the acoustic response of two interacting bubbles is not just a
sum of their individual responses even if the bubbles oscillate
in the linear regime.

However, available theoretical studies on the dynamics
of two interacting bubbles are devoted to bubbles in an un-
bounded liquid. To the best of our knowledge, there are no
theoretical works on the dynamics of two interacting bubbles
under the conditions of full confinement. Thus, the effect of
full confinement on the behavior of interacting bubbles is
presently unknown. This fact has served as a motivation for
our study presented here.

Our study proposes a theory that describes the nonlinear
dynamics of two interacting bubbles inside a spherical liquid-
filled cavity surrounded by an elastic medium. The developed
theory allows one to study the effect of full confinement on
the coupled oscillations of the bubbles. In Sec. II, equations
for the pulsation and translation motion of the bubbles are
derived by the Lagrangian formalism. In Sec. III, the derived
equations are used to perform numerical simulations and to
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FIG. 1. Two bubbles inside a liquid-filled cavity.

compare results with the behavior of two interacting bubbles
in an unbounded liquid.

II. THEORY

We assume that two spherical gas bubbles are inside a
spherical liquid-filled cavity surrounded by an elastic solid
layer; see Fig. 1. The bubble centers are assumed to be located
on a diameter of the cavity. In this case, the problem possesses
axial symmetry, which simplifies its analytical consideration.
If this assumption is abandoned, the problem turns into a 3D
problem and its solution becomes extremely complicated. We
assume that, if the bubbles are not located along the diameter
of the cavity, their behavior should demonstrate the same
qualitative features, even though quantitative characteristics of
this process will be different. Because, as we expect, the main
physical factor that affects the bubble behavior in a cavity
is the presence of full confinement as such. Therefore, we
believe that our theoretical analysis, despite the fact that it
is based on the simplified mathematical formulation, should
give a correct insight into the dynamics of bubbles enclosed
in a cavity.

We introduce a spherical coordinate system whose origin
is at the center of the cavity and the z axis goes through the
bubble centers. The position vector r in this coordinate system
has the coordinates (r, θ , ε). Each bubble has its own local
spherical coordinate system whose origin is at the moving
center of the bubble. The position vector r j in the coordinate
system of the jth bubble has coordinates (r j, θ j, ε j ). The
position of the center of the jth bubble with respect to the
center of the cavity is denoted as z j . In view of symmetry,
the translational motion of the bubbles can only occur along
the z axis. The liquid in the cavity is assumed incompressible
and inviscid so its motion is described by a scalar velocity
potential that obeys the Laplace equation #ϕ = 0.

The mathematical derivation consists of the following main
stages. We first find solutions for the liquid motion inside the
cavity. Doing so, we use transformations between the coordi-

nate systems described above to satisfy boundary conditions
at the bubble surfaces and at the cavity surface. We then find
solutions for the motion of the solid medium, assuming that
the cavity shape keeps spherical at all times. As a result,
four quantities remain unknown: the time-varying bubble radii
and the positions of the bubble centers. To derive equations
for these quantities, we apply the method of the Lagrangian
formalism.

A. Solutions inside the cavity

The total velocity potential in the liquid can be written as

ϕ = ϕ1 + ϕ2 + ϕc, (1)

where ϕ j is the velocity potential of the jth bubble and ϕc is
the velocity potential produced by the motion of the cavity
surface. The expressions for ϕ j and ϕc, satisfying the Laplace
equation, are given by

ϕ j =
∞∑

n=0

a( j)
n (t )

(
Rj

r j

)n+1

Pn(cos θ j ), j = 1, 2, (2)

ϕc =
∞∑

n=1

An(t )
(

r
Rc0

)n

Pn(cos θ ), (3)

where Rj (t ) is the instantaneous radius of the jth bubble,
Rc0 is the radius of the cavity at rest, and Pn is the Legendre
polynomial of order n.

The unknown functions a( j)
n and An are calculated in Ap-

pendix A. To this end, boundary conditions at the bubble
surfaces and at the cavity surface are used. As a result,
recurrence formulas are derived that allow one to evaluate a( j)

n
and An with any desired accuracy; see Eqs. (A21)–(A23) in
Appendix A.

B. Solutions in the solid

The motion of the solid is described by the Navier equation
[27],

ρs
∂2u
∂t2

= µ#u + (λ + µ)∇(∇ · u), (4)

where u is the displacement vector, ∂u/∂t is the velocity in the
solid, ρs is the density of the solid, and λ and µ are the Lamé
coefficients. In view of the spherical shape of the cavity, u has
only a radial component, u(r, t ), which can be written in terms
of a potential ϕs as

u(r, t ) = ∂ϕs

∂r
. (5)

An expression for ϕs, satisfying Eq. (4), is written as

ϕs = − s1(t − r/cs)
r

− s2(t + r/cs)
r

, (6)

where cs =
√

(λ + 2µ)/ρs is the longitudinal wave speed
[27].

053106-2



NONLINEAR DYNAMICS OF TWO COUPLED BUBBLES … PHYSICAL REVIEW E 99, 053106 (2019)

Substitution of Eq. (6) into Eq. (5) yields

u(r, t ) = s1(t − r/cs) + s2(t + r/cs)
r2

+ s′
1(t − r/cs) − s′

2(t + r/cs)
csr

. (7)

It is shown in Appendix B that, with an accuracy up to 1/c2
s ,

Eq. (7) gives

u(r, t ) = R2
c0(Rc − Rc0)

r2
+ R2

c0R̈c

2c2
s

(
R2

c0

r2
− 1

)
, (8)

where Rc(t ) is the instantaneous radius of the cavity. From
Eq. (8), it follows that the velocity in the solid is calculated by

∂u(r, t )
∂t

= R2
c0Ṙc

r2
+ R2

c0
...
Rc

2c2
s

(
R2

c0

r2
− 1

)
. (9)

C. Equations for Rj and z j

The solutions obtained above are used to derive equations
for the bubble radii Rj (t ) and the positions of the bubble
centers z j (t ). To this end, the Lagrangian formalism is applied.
The derivation is performed in Appendix C. As a result, we are
led to the following equations:

R1R̈1[1 + F (R1, z1)] + Ṙ2
1

[
3
2

+ 2F (R1, z1)
]

− ż2
1

4

(
1 + 2R3

1

R3
c0

)
− P1

ρl
+ 4µ

ρl

(
Rc

Rc0
− 1

)(
1 − R3

c0

R3
s

)
− H

c2
s

+
(
R2R̈2 + 2Ṙ2

2

)
G(R2, z1, z2) + R3

1z1z̈1

R3
c0

− R2z̈2

(
R2

2

2d2
− R2

2z1

R3
c0

)

− R2
2Ṙ2(ż1 + 5ż2)

2d2
+ R3

2ż2(ż1 + 2ż2)
2d3

+ 8R2
1Ṙ1z1ż1 + 2R2

2Ṙ2(5z1ż2 − ż1z2) − R3
2ż1ż2

2R3
c0

= 0, (10)

R2R̈2[1 + F (R2, z2)] + Ṙ2
2

[
3
2

+ 2F (R2, z2)
]

− ż2
2

4

(
1 + 2R3

2

R3
c0

)
− P2

ρl
+ 4µ

ρl

(
Rc

Rc0
− 1

)(
1 − R3

c0

R3
s

)
− H

c2
s

+
(
R1R̈1 + 2Ṙ2

1

)
G(R1, z1, z2) + R3

2z2z̈2

R3
c0

+ R1z̈1

(
R2

1

2d2
+ R2

1z2

R3
c0

)

+ R2
1Ṙ1(ż2 + 5ż1)

2d2
+ R3

1ż1(ż2 + 2ż1)
2d3

+ 8R2
2Ṙ2z2ż2 + 2R2

1Ṙ1(5ż1z2 − z1ż2) − R3
1ż1ż2

2R3
c0

= 0, (11)

R1z̈1

3

(
1 + 3R3

1

R3
c0

)
+ Ṙ1ż1

(
1 + 6R3

1

R3
c0

)
+

2R2
1z1

(
R1R̈1 + 3Ṙ2

1

)

R3
c0

+ R2
[
R1

(
R2R̈2 + 2Ṙ2

2

)
+ R2Ṙ1Ṙ2

](2z2

R3
c0

+ 1
d2

)

+ R2
2

[
R1R2z̈2 + ż2(R2Ṙ1 + 5R1Ṙ2)

]( 1
R3

c0
− 1

d3

)
= FD1

2πρlR2
1
, (12)

R2z̈2

3

(
1 + 3R3

2

R3
c0

)
+ Ṙ2ż2

(
1 + 6R3

2

R3
c0

)
+

2R2
2z2

(
R2R̈2 + 3Ṙ2

2

)

R3
c0

R1
[
R2

(
R1R̈1 + 2Ṙ2

1

)
+ R1Ṙ1Ṙ2

](2z1

R3
c0

− 1
d2

)

+ R2
1

[
R1R2z̈1 + ż1(R1Ṙ2 + 5R2Ṙ1)

]( 1
R3

c0
− 1

d3

)
= FD2

2πρlR2
2
, (13)

where ρl is the liquid density, µ is the shear modulus of the
solid, d (t ) = z2(t ) − z1(t ) is the distance between the bubble
centers, Pj is the scattered pressure at the surface of the jth
bubble, which is given by Eq. (C5), FD j is the viscous drag
force on the jth bubble, which is given by Eq. (C6), and the
functions F , G, and H are defined by Eqs. (C33), (C34), and
(C44), respectively.

Equations (10) and (11) govern the coupled pulsations of
the bubbles and Eqs. (12) and (13) govern their translational
motion. All these equations are ordinary differential equations
of second order with respect to time derivatives. They form a
combined system and should be solved simultaneously.

D. Linearized equations

The aim of this subsection is to simplify Eqs. (10) and (11)
to make them amenable to analytical consideration. To this
end, we linearize them, neglecting the translational motion

and the compressibility corrections in the liquid and in the
solid. We also assume that Rs ≫ Rc0, where Rs denotes the
external radius of the solid layer (see Appendix C).

We set

Rj = Rj0 + x j (t ), Rc = Rc0 + xc(t ), (14)

where Rj0 denotes the equilibrium radius of the jth bubble,
and we assume that |x j | ≪ Rj0 and |xc| ≪ Rc0.

Substituting Eq. (14) into Eqs. (10) and (11), using the
results of Appendix C, and keeping up to terms of first order
in x j and xc, one obtains

ẍ1 + δ1ẋ1 + ω2
10x1 + R20

R10α1

(
β2ẍ2 + α2-

2
2x2

)
= − Pac

ρlR10α1
,

(15)

ẍ2 + δ2ẋ2 + ω2
20x2 + R10

R20α2

(
β1ẍ1 + α1-

2
1x1

)
= − Pac

ρlR20α2
,

(16)
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where

ω2
j0 = 1

ρlR2
j0α j

(
3γ Pgj − 2σl

R j0

)
+ -2

j , (17)

-2
j = 4µRj0

ρlR3
c0α j

, (18)

δ j = 4ηl

ρlR2
j0α j

, (19)

α j = 1 + Rj0

Rc0

(
1 + ρs

ρl

)
+

2Rj0z2
j0

R3
c0

, (20)

β j = Rj0

d
+ Rj0

Rc0

(
1 + ρs

ρl

)
+ 2Rj0z10z20

R3
c0

. (21)

Definitions of all the quantities that appear in these equa-
tions are given in Appendix C. Note that for Rc0 → ∞, the
first term in Eq. (17) gives the natural frequency of the jth
bubble in an unbounded liquid.

To calculate the eigenfrequencies of the system of Eqs. (15)
and (16), we set the external acoustic excitation equal to zero
(Pac = 0) and x j = a j exp(−iωt ). As a result, Eqs. (15) and
(16) reduce to

(
ω2 − ω2

10 + iωδ1
)
a1 + R20

R10α1

(
β2ω

2 − α2-
2
2

)
a2 = 0, (22)

R10

R20α2

(
β1ω

2 − α1-
2
1

)
a1 +

(
ω2 − ω2

20 + iωδ2
)
a2 = 0. (23)

An equation for calculating the eigenfrequencies is derived
setting the determinant of Eqs. (22) and (23) equal to zero.
This operation results in

(
ω2 − ω2

10 + iωδ1
)(

ω2 − ω2
20 + iωδ2

)

− 1
α1α2

(
β1ω

2 − α1-
2
1

)(
β2ω

2 − α2-
2
2

)
= 0. (24)

As one can see, Eq. (24) is an equation of the forth order
in ω. In the general case, a numerical solution of this equation
is only possible. Yet, for two identical bubbles, R10 = R20, an
analytical solution can be obtained. In this case, neglecting the
viscous dissipation (δ j = 0), Eq. (24) reduces to

(
1 − β2

1

α2
1

)
ω4 − 2

α1

(
α1ω

2
10 − β1-

2
1

)
ω2 + ω4

10 − -4
1 = 0.

(25)

The roots of this equation are given by

ω2
1,2 =

α1ω
2
10 − β1-

2
1 ±

∣∣α1-
2
1 − β1ω

2
10

∣∣

α1
(
1 − β2

1/α2
1

) . (26)

If R10, z j0 ≪ Rc0 and R10 ≪ d , Eq. (26) is simplified to

ω2
1,2 = ω2

10 − β1-
2
1 ±

∣∣-2
1 − β1ω

2
10

∣∣. (27)

If β1, given by Eq. (21), is sufficiently small, one can write

ω2
1 ≈ ω2

10 + -2
1, ω2

2 ≈ ω2
10 − -2

1. (28)

From Eq. (17) it follows that

ω2
1 ≈ ω2

M + 2-2
1, ω2 ≈ ωM, (29)

where

ωM = 1
R10

√
3γ Pg1

ρl
− 2σl

ρlR10
. (30)

Equation (30) is the natural frequency of a single bubble in
an unbounded liquid. This frequency is known as the Minnaert
frequency, although, strictly speaking, the original Minnaert
formula ignores surface tension [28].

Analysis reveals that the bubbles pulsate with the fre-
quency ω1 in phase and with the frequency ω2 in antiphase. In
many cases of interest, ωM ≪ -1. In such cases, the natural
frequency of a single bubble in a cavity is approximately equal
to -1 given by Eq. (18) [13,15]. This means that the in-phase
free oscillation of two bubbles in a cavity is

√
2 times faster

than that of a single bubble. The antiphase free oscillation of
two bubbles in a cavity occurs at the Minnaert frequency.

In the limit Rc0 → ∞, Eq. (27) gives

ω1,2 = ωM

(
1 ± R10

2d

)
. (31)

This is the well-known equation for the eigenfrequencies of
two identical bubbles separated by distance d in an unbounded
liquid [29].

III. NUMERICAL SIMULATIONS

Numerical simulations have been carried out by means of
the program package MATHEMATICA (Wolfram Research,
Champaign, IL). The following values of the physical parame-
ters were used: ρl = 1000 kg/m3, cl = 1500 m/s, ηl = 0.001
Pa s, σl = 0.072 N/m, ρs = 800 kg/m3, cs = 4000 m/s, µ =
0.75 GPa, P0 = 101.3 kPa, and γ = 1.4. The parameters of
the liquid correspond to water and the parameters of the
solid correspond to wood (oak). We have chosen wood as
a surrounding medium because one of the most interesting
applications where one has to deal with bubbles in a cavity
is the investigation of cavitation events inside tree trunks
[6,7,9,10].

The main subject of interest in our numerical simulations is
the acoustic response (resonance frequencies) of a two-bubble
system in a cavity in comparison with the same case in an
unbounded liquid. Because it is the acoustic response that is
of prime interest in most applications.

Excitation is produced by an acoustic pressure pulse shown
in Fig. 2. That is a Gaussian pulse given by

Pac(t ) = Pa sin(2π f t )e−(2 f t/N )4
, (32)

where Pa is the amplitude, f is the frequency, and N is the
number of cycles. In Fig. 2, Pa = 50 kPa, f = 1.5 MHz, and
N = 5.

Figures 3(a)–3(c) show the response of two bubbles con-
fined in a cavity to the acoustic pulse depicted in Fig. 2. It is
assumed that R10 = 7.5 µm, R20 = 5 µm, z1(0) = −50 µm,
z2(0) = 50 µm, Rc0 = 100 µm, and Rs = 500 µm. For com-
parison, Figs. 3(d)–3(f) show the response of the same bubbles
in an unbounded liquid. Figures 3(a) and 3(b) show the
radial oscillation of bubbles 1 and 2, respectively. Figure 3(c)
shows the spectra of the oscillation curves. Comparison with
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the curves presented in Figs. 3(d)–3(f) reveals considerable
differences from the behavior of the bubbles in an unbounded
liquid. As one can see, in an unbounded liquid, the forced
oscillation in response to the imposed pulse ceases almost
right after the termination of the pulse and the bubbles begin
to execute free oscillations with proper natural frequencies.

This is confirmed by two sharp spectral peaks at the left
in Fig. 3(f). The Minnaert frequencies of the bubbles, i.e.,
the linear natural frequencies of the bubbles when they are
far apart in an unbounded liquid, are 468 kHz for bubble
1 and 724 kHz for bubble 2. In the cavity, as is seen in
Fig. 3(c), the forced oscillation turns into a free oscillation
with a frequency of about 1 MHz, which is experienced by
both bubbles. Calculations show that this oscillation gradually
disappears with increasing Rc0.

Figure 4 illustrates the translational motion of the bubbles,
the parameters being the same as in Fig. 3, except that the
number of cycles in the excitation pulse was set equal to N =
500 to increase the translational shift. The solid line shows the
motion of the bubbles in the cavity, whereas the dashed line
shows their motion in an unbounded liquid. The bubbles are
moving toward each other. As one can see, the approach of the
bubbles in the cavity occurs faster.

As said above, the Minnaert frequencies of the bubbles
shown in Figs. 3 and 4 are 468 kHz for bubble 1 and 724
kHz for bubble 2. This means that the bubbles in Figs. 3 and
4 are excited above resonance. Figures 5 and 6 illustrate the
case that the driving frequency, f = 600 kHz, is in between
the natural frequencies of the bubbles, the other parameters
being the same as in Figs. 3 and 4, except that N = 50 in

2 4 6 8 10

-0.15

-0.10

-0.05

0.05

0.10

2 4 6 8 10

-0.05

0.05

2 4 6 8 10

-0.2

-0.1

0.1

0.2

0.3

2 4 6 8 10

-0.15

-0.10

-0.05

0.05

0.10

0.15

0.5 1.0 1.5 2.0 2.5

0.2

0.4

0.6

0.8

1.0

0.5 1.0 1.5 2.0 2.5

0.2

0.4

0.6

0.8

1.0

R
t
R

1
10

( )
-

(
m

)
µ

R
t
R

1
10

( )
-

(
m

)
µ

Time ( s)µ Time ( s)µ

( s)µ( s)µ

(a) (d)

Time 

R
t
R

2
20

( )
-

(
m

)
µ

(b)

Time 

R
t
R

2
20

( )
-

(
m

)
µ

(e)

N
or

m
al

iz
ed

 sp
ec

tru
m

(c) (f)

N
or

m
al

iz
ed

 sp
ec

tru
m

Frequency (MHz) Frequency (MHz)

Bubble 1
Bubble 2

Bubble 1
Bubble 2

FIG. 3. Response of bubbles to the acoustic pulse shown in Fig. 2. Left panel: bubbles in a cavity. Right panel: bubbles in an unbounded
liquid. R10 = 7.5 µm, R20 = 5 µm, z1(0) = −50 µm, z2(0) = 50 µm, Rc0 = 100 µm, Rs = 500 µm. The Minnaert frequencies of the bubbles
are 468 and 724 kHz. The bubbles are excited above their natural frequencies.

053106-5



ALEXANDER A. DOINIKOV et al. PHYSICAL REVIEW E 99, 053106 (2019)

100 200 300 400 500

97.0

97.5

98.0

98.5

99.0

99.5

100.0

z
t
z
t

2
1

( )
 -

( )
 (

m
)

µ

Unbounded liquid
Cavity

FIG. 4. Translational motion of two bubbles in a cavity and in
an unbounded liquid. The parameters are as described in the caption
of Fig. 3, except that the number of cycles in the excitation pulse is
N = 500. The bubbles are moving toward each other.

Fig. 6. We again observe a considerable difference between
the pulsations of the bubbles in the cavity and in an unbounded
liquid. The difference is especially visible when we compare
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the spectra shown in Figs. 5(c) and 5(f). It is interesting to note
that in the cavity, the natural frequencies of the bubbles do
not manifest themselves even after the acoustic pulse is over.

FIG. 5. Response of bubbles to an acoustic pulse with the parameters f = 0.6 MHz, Pa = 50 kPa, N = 5. Left panel: bubbles in a cavity.
Right panel: bubbles in an unbounded liquid. R10 = 7.5 µm, R20 = 5 µm, z1(0) = −50 µm, z2(0) = 50 µm, Rc0 = 100 µm, Rs = 500 µm.
The driving frequency lies between the natural frequencies of the bubbles.
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FIG. 7. Response of bubbles to an acoustic pulse with the parameters f = 0.3 MHz, Pa = 50 kPa, N = 5. Left panel: bubbles in a cavity.
Right panel: bubbles in an unbounded liquid. R10 = 7.5 µm, R20 = 5 µm, z1(0) = −50 µm, z2(0) = 50 µm, Rc0 = 100 µm, Rs = 500 µm.
The bubbles are excited below their natural frequencies.

Figure 6 shows the translational motion of the bubbles. As one
can see, the bubbles are moving away from each other, the
terminal separation between the bubbles in the cavity being
greater than that in an unbounded liquid.

Figures 7 and 8 show the behavior of the bubbles at f =
300 kHz, the other parameters being the same as in Figs. 3 and
4, except that N = 1000 in Fig. 8. In this case, the bubbles are
excited below their natural frequencies. Figure 7(f) predicts
strong second and third harmonics in an unbounded liquid.
In the cavity, according to Fig. 7(c), the second harmonic
only develops. Note also that the oscillation amplitude in the
cavity is much smaller than that in an unbounded liquid. The
translational motion, presented in Fig. 8, demonstrates that in
an unbounded liquid, the acoustic pulse makes the bubbles
approach, whereas in the cavity, the bubbles in fact stay where
they are, showing a weak tendency to move away from each
other.

Figures 9 and 10 exemplify free oscillations, which are
excited at Pa = 0 by a small initial deviation from the equi-
librium bubble radii. Figure 9 demonstrates the case of equal
bubbles with R10 = R20 = 5 µm. The Minnaert frequency
corresponding to this size is 724 kHz. Other parameters are
z1(0) = −50 µm, z2(0) = 50 µm, Rc0 = 100 µm, and Rs =

500 µm. Figure 9(d) shows that in an unbounded liquid, the
bubbles pulsate at a frequency of 706 kHz. As would be
expected, this value corresponds to Eq. (31). In the cavity,
as follows from Fig. 9(b), the bubbles pulsate at 1.025 MHz.
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FIG. 8. Translational motion of two bubbles in a cavity and in an
unbounded liquid. The parameters are as described in the caption of
Fig. 7, except that N = 1000.
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FIG. 9. Free oscillations of two equal bubbles. Left panel: bubbles in a cavity. Right panel: bubbles in an unbounded liquid. R10 = R20 =
5 µm, z1(0) = −50 µm, z2(0) = 50 µm, Rc0 = 100 µm, Rs = 500 µm. The Minnaert frequency of the bubbles is 724 kHz. The free oscillations
are excited by a small initial deviation from the equilibrium bubble radii.

FIG. 10. Free oscillations of two unequal bubbles. Left panel: bubbles in a cavity. Right panel: bubbles in an unbounded liquid. R10 =
7.5 µm, R20 = 5 µm, z1(0) = −50 µm, z2(0) = 50 µm, Rc0 = 100 µm, Rs = 500 µm. The Minnaert frequencies of the bubbles are 468 kHz
and 724 kHz.
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This value is well approximated by Eq. (26). Note that in the
case under study, ωM is not small compared to -1, so the
approximate expressions derived in the last but one paragraph
of Sec. II D are not valid.

Figure 10 illustrates the case of unequal bubbles with
R10 = 7.5 µm and R20 = 5 µm, the other parameters being
the same as in Fig. 9. As one can see, in an unbounded liquid,
the bubbles pulsate at frequencies close to their Minnaert
frequencies, whereas in the cavity, they pulsate at different fre-
quencies. This result confirms the analytical predictions made
in Sec. II D that the confinement in a cavity fundamentally
changes the eigenfrequencies of a two-bubble system.

IV. EXPERIMENTS IN CLOSED RECTANGULAR
CHANNELS

In this section, we present experiments for two confined
bubbles freely oscillating after nucleation. The geometry of
the confinement is different from that considered in our theory.
However, we suppose that the main physical factor in the
problem under study is the presence of full confinement as
such rather than its concrete form. In other words, in the
experiments just as in our theory, bubbles are coupled by a
finite liquid volume enclosed in an elastic medium. We believe
that the qualitative similarity of physical conditions should
give rise to a similarity in the qualitative behavior of the
bubbles.

The microchannels are fabricated in pHEMA hydrogel
using the method by Wheeler and Stroock [30]. The channels
are filled with water after soaking in degassed water over
one night. The channels are then placed in a dry atmosphere
for 12 h with a humidity level imposed by the method of
salt solutions. Under drying, the hydrogel becomes extremely
stiff, resisting an intense negative pressure (about – 5 MPa)
that progressively builds up in the liquid contained in the
channel when it per-evaporates through the channel. Bubble
nucleation is triggered by a laser pulse shot in the hydrogel
near the channel, using the same set-up as that described in
works of Vincent et al. [11] and Vincent and Marmottant
[13]. A high-speed camera, synchronized with the laser pulse,
records four images before the bubble nucleation and then the
growth of the bubbles; see Fig. 11.

The data acquired in the above experiments can be com-
pared to our theory. Note that in the experiments, the hydro-
static liquid pressure was not constant. It was initially negative
and then it was relaxing following the bubble growth and the

FIG. 11. Growth and evolution of two bubbles in a rectangular
microchannel. Images are taken after nucleation at times (a) 1.9 µs,
(b) 15 µs, (c) 45 µs. The vertical scale is 100 µm.

FIG. 12. Comparison of experimental data and theoretical
predictions.

stress relaxation in the solid. Based on the results of Vincent
and Marmottant [13], the relaxation of the hydrostatic liquid
pressure can be approximated by the following expression:

Pl (t ) = P0 + K
(

R1

Rc0

)3

+ K
(

R2

Rc0

)3

, (33)

where K is an effective solid modulus.
In our theory, the driving pressure is set by P0 + Pac(t );

see Eq. (C5). To model the relaxation of the hydrostatic
pressure, we replace P0 + Pac(t ) with Eq. (33). Based on
the experimental measurements, the physical parameters used
in our simulation were set as follows: ρl = 1000 kg/m3,
cl = 1500 m/s, ηl = 0.01 Pa s, σl = 0.027 N/m, ρs =
1233 kg/m3, cs = 2111 m/s, γ = 1, P0 = −10 kPa, K =
8 MPa, µ = (3/4)K , Rc0 = 450 µm, Rs = 103 µm, z1(0) =
−225 µm, z2(0) = 225 µm, R10 = 6 µm, R20 = 5.95 µm,
and Pgj = pg0 + 2σl/Rj0 with pg0 = 1 kPa. The values of P0,
K , R10, and R20, which could not be exactly measured, were
used as fitting parameters.

The comparison of the experimental results, shown by
circles and squares, with theoretical predictions, shown by
solid and dashed curves, is presented in Fig. 12. In a cavity,
regardless of its shape, there is a strong coupling between the
volumes of bubbles because the sum of the bubble volumes
must remain constant if the compressibility of the liquid is
negligible. This effect is demonstrated by Fig. 12. We see
that, if the equilibrium volume of one bubble increases, that
of the other bubble decreases. Such a coupling is absent for
bubbles in an unbounded liquid and therefore the acoustic
interaction of bubbles in an unbounded liquid does not change
their equilibrium radii. As Fig. 12 shows, in spite of the
different form of the confinement, the behavior of the bubbles
in the experiment demonstrates the same qualitative features
as those predicted by the theory for a spherical confinement.

V. CONCLUSIONS

In the present study, a theory has been developed that
allows one to model the nonlinear dynamics of two coupled
gas bubbles inside a spherical liquid-filled cavity surrounded
by an elastic medium. The aim of the study was to reveal
how the conditions of full confinement affected the coupled
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oscillations of the bubbles. To make the problem amenable
to analytical consideration, the bubbles were assumed to be
located on a diameter of the cavity. This assumption makes the
problem axisymmetric, which simplifies calculations. Com-
bined equations for the pulsation and translation motion of the
bubbles were derived. The derivation was carried out by the
Lagrangian formalism. The derived equations were then used
in numerical simulations. The behavior of two bubbles in a
cavity was compared with the behavior of the same bubbles in
an unbounded liquid. The comparison has revealed that both
forced and free oscillations of two bubbles in a cavity occur
differently than those in an unbounded liquid. In particular,
the eigenfrequencies of a two-bubble system in a cavity are
found to be different from those in an unbounded liquid.
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APPENDIX A: CALCULATION OF a( j)
n (t ) AND An(t )

In this Appendix, we calculate the functions a( j)
n (t ) and

An(t ) that appear in Eqs. (2) and (3). To this end, we apply
boundary conditions at the bubble surfaces and at the cavity
surface.

To satisfy the boundary conditions at the bubble surfaces,
we need an expression for ϕ1 in terms of the coordinates of
bubble 2 and vice versa. These expressions can be written as

ϕ1 =
∞∑

n=0

b(1)
n (t )

( r2

d

)n
Pn(cos θ2), (A1)

ϕ2 =
∞∑

n=0

b(2)
n (t )

( r1

d

)n
Pn(cos θ1), (A2)

where b( j)
n is a time function to be determined and d (t ) =

z2(t ) − z1(t ) is the distance between the bubble centers. Note
that z2 is taken to be greater than z1 to keep d positive.

To find b( j)
n , we apply the following mathematical identities

[31]:

Pn(cos θ1)

rn+1
1

=
∞∑

m=0

(−1)m(n + m)!
dn+1n!m!

( r2

d

)m
Pm(cos θ2), (A3)

Pn(cos θ2)

rn+1
2

=
∞∑

m=0

(−1)n(n + m)!
dn+1n!m!

( r1

d

)m
Pm(cos θ1). (A4)

Substituting Eq. (A3) into Eq. (2) at j = 1 and comparing
with Eq. (A1), one obtains

b(1)
n =

∞∑

m=0

(−1)n(n + m)!
n!m!

ξm+1
1 a(1)

m , (A5)

where ξ1 = R1/d .

Substituting Eq. (A4) into Eq. (2) at j = 2 and comparing
with Eq. (A2), one obtains

b(2)
n =

∞∑

m=0

(−1)m(n + m)!
n!m!

ξm+1
2 a(2)

m , (A6)

where ξ2 = R2/d .
To satisfy the boundary condition at the cavity surface, we

need an expression for ϕ j in terms of the global coordinates.
It can be written as

ϕ j =
∞∑

n=0

c( j)
n (t )

(
Rc0

r

)n+1

Pn(cos θ ). (A7)

To find c( j)
n , we use the following identity [31]:

Pn(cos θ j )

rn+1
j

=
∞∑

m=n

m!zm−n
j

n!(m − n)!
Pm(cos θ )

rm+1
. (A8)

Substituting Eq. (A8) into Eq. (2) and comparing with
Eq. (A7), one obtains

c( j)
n =

n∑

m=0

n!zn−m
j Rm+1

j

m!(n − m)!Rn+1
c0

a( j)
m . (A9)

We also need an expression for ϕc in terms of the coordi-
nates of the jth bubble. This expression is given by

ϕc =
∞∑

n=0

A( j)
n (t )

(
r j

R j

)n

Pn(cos θ j ). (A10)

To find A( j)
n , we use the following identity [31]:

rnPn(cos θ ) =
n∑

m=0

n!zn−m
j

m!(n − m)!
rm

j Pm(cos θ j ). (A11)

Substituting Eq. (A11) into Eq. (3) and comparing with
Eq. (A10), one obtains

A( j)
n =

∞∑

m=1
m!n

m!zm−n
j Rn

j

n!(m − n)!Rm
c0

Am. (A12)

We can now apply the boundary conditions. The boundary
condition for the normal velocity at the surface of the jth
bubble is given by

∂ϕ

∂r j
= Ṙ j + ż j cos θ j at r j = Rj, (A13)

where the overdot means the time derivative. On substitution
of Eqs. (2), (A1), (A2), and (A10), Eq. (A13) gives

a(1)
n = −R1Ṙ1δn0 − 1

2
R1ż1δn1 + n

n + 1

(
ξ n

1 b(2)
n + A(1)

n

)
,

(A14)

a(2)
n = −R2Ṙ2δn0 − 1

2
R2ż2δn1 + n

n + 1

(
ξ n

2 b(1)
n + A(2)

n

)
,

(A15)

where δnm is the Kronecker δ.

053106-10



NONLINEAR DYNAMICS OF TWO COUPLED BUBBLES … PHYSICAL REVIEW E 99, 053106 (2019)

The boundary condition for the normal velocity at the inner
cavity surface is given by

∂ϕ

∂r
= Ṙc at r = Rc0, (A16)

where Rc(t ) is the instantaneous radius of the cavity. As is the
convention in the linear theory of elasticity, we assume that the
deformation of the solid is small and therefore the boundary
condition is applied to the cavity surface at rest.

Substituting Eqs. (3) and (A7) into Eq. (A16), one finds

c(1)
n + c(2)

n = −Rc0Ṙcδn0 + n
n + 1

An. (A17)

Substitution of Eq. (A9) into Eq. (A17) yields

−Rc0Ṙcδn0 + n
n + 1

An

= n!

Rn+1
c0

n∑

m=0

Rm+1
1 zn−m

1 a(1)
m + Rm+1

2 zn−m
2 a(2)

m

m!(n − m)!
. (A18)

From Eq. (A18) for n = 0, using Eqs. (A14) and (A15),
one obtains

R2
c0Ṙc = R2

1Ṙ1 + R2
2Ṙ2. (A19)

It is worth noting that Eq. (A19) expresses the conservation
of the liquid volume, which follows from the assumption of
liquid incompressibility.

From Eq. (A18) for n ! 1 follows

An = (n + 1)(n − 1)!

Rn+1
c0

×
n∑

m=0

Rm+1
1 zn−m

1 a(1)
m + Rm+1

2 zn−m
2 a(2)

m

m!(n − m)!
for n ! 1. (A20)

Substitution of Eq. (A20) into Eq. (A12) gives an expres-
sion for A( j)

n in terms of a( j)
n ,

A( j)
n =

Rn
j

n!

∞∑

m=1
m!n

m∑

l=0

(m − 1)!(m + 1)!
l!(m − n)!(m − l )!

zm−n
j

R2m+1
c0

×
(
Rl+1

1 zm−l
1 a(1)

l + Rl+1
2 zm−l

2 a(2)
l

)
. (A21)

Substituting Eqs. (A6) and (A21) into Eq. (A14), one
obtains

a(1)
n = −R1Ṙ1δn0 − 1

2
R1ż1δn1

+ nξ n
1

(n + 1)!

∞∑

m=0

(−1)m(n + m)!
m!

ξm+1
2 a(2)

m

+ nRn
1

(n + 1)!

∞∑

m=1
m!n

m∑

l=0

(m − 1)!(m + 1)!
l!(m − n)!(m − l )!

zm−n
1

R2m+1
c0

×
(
Rl+1

1 zm−l
1 a(1)

l + Rl+1
2 zm−l

2 a(2)
l

)
. (A22)

Substituting Eqs. (A5) and (A21) into Eq. (A15), one
obtains

a(2)
n = −R2Ṙ2δn0 − 1

2
R2ż2δn1

+ (−1)nnξ n
2

(n + 1)!

∞∑

m=0

(n + m)!
m!

ξm+1
1 a(1)

m

+ nRn
2

(n + 1)!

∞∑

m=1
m!n

m∑

l=0

(m − 1)!(m + 1)!
l!(m − n)!(m − l )!

zm−n
2

R2m+1
c0

×
(
Rl+1

1 zm−l
1 a(1)

l + Rl+1
2 zm−l

2 a(2)
l

)
. (A23)

Equations (A22) and (A23) allow one to calculate a( j)
n with

any desired accuracy, considering ξ j , Rj/Rc0, and z j/Rc0 as
expansion parameters and using a recurrence procedure.

APPENDIX B: CALCULATION OF THE DISPLACEMENT
IN THE SOLID

We apply the boundary condition for the displacement at
the cavity surface,

u(r, t ) = Rc(t ) − Rc0 at r = Rc0, (B1)

where Rc(t ) is the instantaneous radius of the cavity. Substitu-
tion of Eq. (7) into Eq. (B1) yields

s1(t − Rc0/cs) + s2(t + Rc0/cs) + Rc0

cs
[s/

1(t − Rc0/cs)

− s/
2(t + Rc0/cs)] = R2

c0(Rc − Rc0), (B2)

where the prime denotes the derivative with respect to the
argument in brackets. From Eq. (B2), it follows that

s/
1(t − Rc0/cs) + s/

2(t + Rc0/cs) + Rc0

cs
[s//

1 (t − Rc0/cs)

− s//
2 (t + Rc0/cs)] = R2

c0Ṙc. (B3)

Equations (B2) and (B3) allow one to calculate u(r, t ) with
an accuracy up to 1/c2

s .
Let us expand u(r, t ) into a Taylor series at r = Rc0 as

follows:

u(r, t ) = s1[t − Rc0/cs − (r − Rc0)/cs] + s2[t + Rc0/cs + (r − Rc0)/cs]
r2

+
s/

1[t − Rc0/cs − (r − Rc0)/cs] − s/
2[t + Rc0/cs + (r − Rc0)/cs]

csr

≈ 1
r2

[s1(t − Rc0/cs) + s2(t + Rc0/cs)] − r − Rc0

csr2
[s/

1(t − Rc0/cs) − s/
2(t + Rc0/cs)]
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+ (r − Rc0)2

2c2
s r2

[s//
1 (t − Rc0/cs) + s//

2 (t + Rc0/cs)]

+ 1
csr

[s/
1(t − Rc0/cs) − s/

2(t + Rc0/cs)] − r − Rc0

c2
s r

[s//
1 (t − Rc0/cs) + s//

2 (t + Rc0/cs)]. (B4)

With the help of Eqs. (B2) and (B3), we finally obtain

u(r, t ) ≈ R2
c0(Rc − Rc0)

r2
+ 1

2c2
s

(
R2

c0

r2
− 1

)
[s//

1 (t − Rc0/cs) + s//
2 (t + Rc0/cs)] ≈ R2

c0(Rc − Rc0)
r2

+ R2
c0R̈c

2c2
s

(
R2

c0

r2
− 1

)
. (B5)

Note that the compressibility corrections are of the order of 1/c2
s . Terms of the order 1/cs are absent. This means that with

an accuracy up to the order 1/cs, the solid can be approximated as an incompressible medium because there is no difference
between solutions given by the compressible and incompressible equations of motion within the aforesaid accuracy.

APPENDIX C: DERIVATION OF EQUATIONS FOR Rj AND z j

Equations for Rj and z j are derived by the method of the Lagrangian formalism. According to this method, we need to
calculate the Lagrangian function L = T − U , where T and U are the kinetic and the potential energies of the system under
study.

The kinetic energy of the liquid within the cavity is given by

Tl = ρl

2

∫

Vl

(∇ϕ)2dVl , (C1)

where ρl is the liquid density and Vl is the volume occupied by the liquid. Equation (C1) can be transformed as follows:

Tl = ρl

2

∫

Vl

∇ · (ϕ∇ϕ)dVl = −ρl

2

(∫

Sc

nc · ϕ∇ϕdSc +
∫

S1

n1 · ϕ∇ϕdS1 +
∫

S2

n2 · ϕ∇ϕdS2

)

= −ρl

2

(∫

Sc

ϕṘcdSc +
∫

S1

ϕ(Ṙ1 + ż1 cos θ1)dS1 +
∫

S2

ϕ(Ṙ2 + ż2 cos θ2)dS2

)
, (C2)

where Sc and S j denote the surfaces of the cavity and of the jth bubble, respectively, and nc and n j are the unit vectors normal to
the surfaces of the cavity and of the jth bubble, respectively, and directed into the liquid. When transforming Eq. (C1), we have
used the Laplace equation #ϕ = 0 to replace (∇ϕ)2 with ∇ · (ϕ∇ϕ) and Gauss’s theorem to go from the volume integral to the
surface integrals [32].

On substitution of the expressions for ϕ near the cavity surface and near the bubble surfaces, Eq. (C2) gives

Tl = 2πρl

[
R3

c0Ṙ2
c + R3

1

(
Ṙ2

1 + ż2
1

6

)
+ R3

2

(
Ṙ2

2 + ż2
2

6

)]
− πρlR2

1

[
2Ṙ1

(
b(2)

0 + A(1)
0

)
+ ż1

(
ξ1b(2)

1 + A(1)
1

)]

−πρl R2
2

[
2Ṙ2

(
b(1)

0 + A(2)
0

)
+ ż2

(
ξ2b(1)

1 + A(2)
1

)]
. (C3)

In Eq. (C3), we have used Eqs. (A14), (A15), and (A17).
The potential energy of the liquid is calculated by

Ul = −4π

3
R3

1P1(t ) − 4π

3
R3

2P2(t ) − z1FD1 − z2FD2, (C4)

where Pj (t ) is the scattered pressure at the surface of the jth bubble and FD j is the viscous drag force on the jth bubble. It should
be noted that the potential energy itself is given by the first two terms of Eq. (C4). The inclusion of the last two terms is an ad-hoc
way that allows one to include the viscous drag forces in the equations of translational motion of the bubbles [22,25,29,33,34].

To allow for liquid compressibility corrections, the pressure Pj can be taken in the form proposed by van der Meer et al. [35],

Pj = Pgj

(
Rj0

Rj

)3γ (
1 − 3γ Ṙ j

cl

)
− 4ηl Ṙ j

R j
− 2σl

R j
− P0 − Pac, (C5)

where Pgj = P0 + 2σl/Rj0 is the equilibrium gas pressure inside the jth bubble, Rj0 is the equilibrium radius of the jth bubble,
γ is the ratio of specific heats of the gas, cl is the speed of sound in the liquid, ηl is the dynamic viscosity of the liquid, σl is the
surface tension, P0 is the hydrostatic pressure in the liquid, and Pac is the driving acoustic pressure.

If viscous effects are restricted to the thin boundary layer at the bubble surfaces, the viscous drag force is shown in Ref. [36]
to be given by

FD j = −12πηlR j ż j . (C6)

According to the analysis performed in Ref. [36], Eq. (C6) is valid not only in the limit of high Reynolds numbers but also
for moderate or even low Reynolds numbers, provided the condition RjṘ jρl/ηl ≫ 1 is satisfied.
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The kinetic energy of the solid, making use of Eq. (9) and keeping up to 1/c2
s , is calculated by

Ts = ρs

2

∫

Vs

(
∂u
∂t

)2

dVs = 2πρsR3
c0

(
1 − Rc0

Rs

)[
Ṙ2

c − Ṙc
...
RcRc0Rs

c2
s

(
1 − Rc0

Rs

)]
, (C7)

where Vs denotes the volume occupied by the solid and Rs is the external radius of the solid layer.
The potential energy of the solid is calculated by

Us =
∫

Vs

εdVs, (C8)

where ε denotes the elastic energy density, which is defined by [21]

ε = µ

(
ui j − 1

3
δi jukk

)2

+ 1
2

Ku2
kk = µ

[(
∂u
∂r

)2

+ 2u2

r2

]

+
(

1
2

K − 1
3
µ

)
(#ϕs)2. (C9)

Here ui j is the linear strain tensor, µ is the shear modulus, K is bulk modulus, and summation over double indices is implied.
Substituting Eq. (8) into Eq. (C9) and keeping up to 1/c2

s , one obtains

ε = 6µR4
c0(Rc − Rc0)2

r6
+ 2µR4

c0R̈c(Rc − Rc0)
c2

s r4

(
3R2

c0

r2
− 1

)
. (C10)

Substitution of Eq. (C10) into Eq. (C8) yields

Us = 8πµRc0(Rc − Rc0)
[

(Rc − Rc0)
(

1 − R3
c0

R3
s

)
+ R3

c0R̈c

c2
s Rs

(
1 − R2

c0

R2
s

)]
. (C11)

Let us return to Eq. (C3). It gives the kinetic energy of the liquid Tl in terms of the functions b( j)
0 , b( j)

1 , A( j)
0 , and A( j)

1 .
These functions can be calculated as expansions in series, considering ξ j , Rj/Rc0, and z j/Rc0 as expansion parameters because
these quantities are always smaller than unity. We will carry out this calculation with an accuracy up to terms of third order of
smallness.

From Eqs. (A22) and (A23), it follows that

a(1)
0 = −R1Ṙ1, (C12)

a(1)
1 = −1

2
R1ż1 + 1

2
ξ1ξ2a(2)

0 − ξ1ξ
2
2 a(2)

1 + R1

R3
c0

(
R1z1a(1)

0 + R2z2a(2)
0 + R2

1a(1)
1 + R2

2a(2)
1

)
, (C13)

a(2)
0 = −R2Ṙ2, (C14)

a(2)
1 = −1

2
R2ż2 − 1

2
ξ1ξ2a(1)

0 − ξ 2
1 ξ2a(1)

1 + R2

R3
c0

(
R1z1a(1)

0 + R2z2a(2)
0 + R2

1a(1)
1 + R2

2a(2)
1

)
. (C15)

From these equations, with an accuracy up to terms of third order, one obtains

a(1)
1 = −1

2
R1ż1

(
1 + R3

1

R3
c0

)
− 1

2
R2Ṙ2ξ1ξ2 + 1

2
R2ż2

(
ξ1ξ

2
2 − R1R2

2

R3
c0

)
− R3

1

R3
c0

Ṙ1z1 − R1R2
2

R3
c0

Ṙ2z2, (C16)

a(2)
1 = −1

2
R2ż2

(
1 + R3

2

R3
c0

)
+ 1

2
R1Ṙ1ξ1ξ2 + 1

2
R1ż1

(
ξ 2

1 ξ2 − R2
1R2

R3
c0

)
− R3

2

R3
c0

Ṙ2z2 − R2
1R2

R3
c0

Ṙ1z1. (C17)

Substitution of Eqs. (C12), (C14), (C16), and (C17) into Eqs. (A5), (A6), and (A21) results in

b(1)
0 = −R1Ṙ1ξ1 − 1

2
R1ż1ξ

2
1 , (C18)

b(1)
1 = R1Ṙ1ξ1 + R1ż1ξ

2
1 , (C19)

b(2)
0 = −R2Ṙ2ξ2 + 1

2
R2ż2ξ

2
2 , (C20)

b(2)
1 = −R2Ṙ2ξ2 + R2ż2ξ

2
2 , (C21)
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A( j)
0 = − z j

R3
c0

(
2R2

1Ṙ1z1 + 2R2
2Ṙ2z2 + R3

1ż1 + R3
2ż2

)
, (C22)

A( j)
1 = − Rj

R3
c0

(
2R2

1Ṙ1z1 + 2R2
2Ṙ2z2 + R3

1ż1 + R3
2ż2

)
. (C23)

Substitution of Eqs. (C18)–(C23) into Eq. (C3) yields

Tl = 2πρl

[
R3

c0Ṙ2
c + R3

1

(
Ṙ2

1 + ż2
1

6

)
+ R3

2

(
Ṙ2

2 + ż2
2

6

)]
+ 2πρl

[
2R2

1R2
2Ṙ1Ṙ2

d
+ R2

1R2
2(R1Ṙ2ż1 − R2Ṙ1ż2)

d2
− R3

1R3
2ż1ż2

d3

]

+ πρl

R3
c0

(
4R4

1Ṙ2
1z2

1 + 4R5
1Ṙ1z1ż1 + R6

1ż2
1 + 4R4

2Ṙ2
2z2

2 + 4R5
2Ṙ2z2ż2 + R6

2ż2
2

)

+ 2πρlR2
1R2

2

R3
c0

(4Ṙ1Ṙ2z1z2 + 2R2Ṙ1z1ż2 + 2R1Ṙ2ż1z2 + R1R2ż1ż2). (C24)

We now can apply the Lagrangian equation,

d
dt

∂L
∂ q̇ j

− ∂L
∂q j

= 0, (C25)

in which Rj and z j should fulfil the role of the generalized coordinates q j .
Note that, as follows from Eq. (A19), Ṙc is a function of Rj and Ṙ j , so we can write

∂Ṙc

∂Rj
= 2RjṘ j

R2
c0

,
∂Ṙc

∂Ṙ j
=

R2
j

R2
c0

. (C26)

In addition, the following equation is valid:

R3
c − R3

1 − R3
2 = R3

c0 − R3
10 − R3

20, (C27)

which gives

∂Rc

∂Rj
=

R2
j

R2
c
. (C28)

Equations (C26)–(C28) are used when the derivatives with respect to Rj and Ṙ j in Eq. (C25) are calculated.
Another point to be made is the appearance of

...
Rc in Eq. (C7) and R̈c in Eq. (C11). These quantities should be considered as

time functions when Eqs. (C7) and (C11) are substituted into Eq. (C25).
With these remarks, substituting Eqs. (C4), (C7), (C11), and (C24) into Eq. (C25), one obtains

R1R̈1[1 + F (R1, z1)] + Ṙ2
1

[
3
2

+ 2F (R1, z1)
]

− ż2
1

4

(
1 + 2R3

1

R3
c0

)
− P1

ρl
+ 4µ

ρl

(
Rc

Rc0
− 1

)(
1 − R3

c0

R3
s

)
− H

c2
s

+
(
R2R̈2 + 2Ṙ2

2

)
G(R2, z1, z2) + R3

1z1z̈1

R3
c0

− R2z̈2

(
R2

2

2d2
− R2

2z1

R3
c0

)

− R2
2Ṙ2(ż1 + 5ż2)

2d2
+ R3

2ż2(ż1 + 2ż2)
2d3

+ 8R2
1Ṙ1z1ż1 + 2R2

2Ṙ2(5z1ż2 − ż1z2) − R3
2ż1ż2

2R3
c0

= 0, (C29)

R2R̈2[1 + F (R2, z2)] + Ṙ2
2

[
3
2

+ 2F (R2, z2)
]

− ż2
2

4

(
1 + 2R3

2

R3
c0

)
− P2

ρl
+ 4µ

ρl

(
Rc

Rc0
− 1

)(
1 − R3

c0

R3
s

)
− H

c2
s

+
(
R1R̈1 + 2Ṙ2

1

)
G(R1, z1, z2) + R3

2z2z̈2

R3
c0

+ R1z̈1

(
R2

1

2d2
+ R2

1z2

R3
c0

)

+ R2
1Ṙ1(ż2 + 5ż1)

2d2
+ R3

1ż1(ż2 + 2ż1)
2d3

+ 8R2
2Ṙ2z2ż2 + 2R2

1Ṙ1(5ż1z2 − z1ż2) − R3
1ż1ż2

2R3
c0

= 0, (C30)

R1z̈1

3

(
1 + 3R3

1

R3
c0

)
+ Ṙ1ż1

(
1 + 6R3

1

R3
c0

)
+

2R2
1z1

(
R1R̈1 + 3Ṙ2

1

)

R3
c0

+ R2
[
R1

(
R2R̈2 + 2Ṙ2

2

)
+ R2Ṙ1Ṙ2

](2z2

R3
c0

+ 1
d2

)

+ R2
2

[
R1R2z̈2 + ż2(R2Ṙ1 + 5R1Ṙ2)

]( 1
R3

c0
− 1

d3

)
= FD1

2πρlR2
1
, (C31)
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R2z̈2

3

(
1 + 3R3

2

R3
c0

)
+ Ṙ2ż2

(
1 + 6R3

2

R3
c0

)
+

2R2
2z2

(
R2R̈2 + 3Ṙ2

2

)

R3
c0

R1
[
R2

(
R1R̈1 + 2Ṙ2

1

)
+ R1Ṙ1Ṙ2

](2z1

R3
c0

− 1
d2

)

+ R2
1

[
R1R2z̈1 + ż1(R1Ṙ2 + 5R2Ṙ1)

]( 1
R3

c0
− 1

d3

)
= FD2

2πρlR2
2
, (C32)

where

F (Rj, z j ) = Rj

Rc0

[
1 + ρs

ρl

(
1 − Rc0

Rs

)]
+

2Rjz2
j

R3
c0

+ 2µRj

c2
s ρl Rs

(
1 − R2

c0

R2
s

)
, (C33)

G(Rj, z1, z2) = Rj

d
+ Rj

Rc0

[
1 + ρs

ρl

(
1 − Rc0

Rs

)]
+ 2Rjz1z2

R3
c0

+ 2µRj

c2
s ρlRs

(
1 − R2

c0

R2
s

)
, (C34)

H = R2
c0Rsρs

2ρl

(
1 − Rc0

Rs

)2 d4Rc

dt4
. (C35)

As one can see, Eqs. (C29) and (C30) involve d4Rc/dt4, which appears in a correction term that is caused by the
compressibility of the solid. Since this term is of the order 1/c2

s , it will suffice to evaluate d4Rc/dt4 with an accuracy up to
leading terms, neglecting all secondary effects. To this end, we can apply the following approximation.

From Eq. (A19), it follows that

R2
c0R̈c = R2

1R̈1 + 2R1Ṙ2
1 + R2

2R̈2 + 2R2Ṙ2
2. (C36)

We can express R̈ j in terms of Ṙ j by the Rayleigh-Plesset equation for a single bubble in an unbounded liquid,

R2
j R̈ j = −3

2
RjṘ2

j + RjPj

ρl
. (C37)

Substitution of Eq. (C37) into Eq. (C36) yields

R2
c0R̈c = 1

2
R1Ṙ2

1 + 1
2

R2Ṙ2
2 + 1

ρl
(R1P1 + R2P2). (C38)

Differentiation of this equation with respect to time gives

R2
c0

...
Rc = R1Ṙ1R̈1 + R2Ṙ2R̈2 + 1

2
Ṙ3

1 + 1
2

Ṙ3
2 + 1

ρl
(Ṙ1P1 + R1Ṗ1 + Ṙ2P2 + R2Ṗ2). (C39)

Substituting Eq. (C37) for R̈ j , one obtains

R2
c0

...
Rc = −Ṙ3

1 − Ṙ3
2 + 1

ρl
(2Ṙ1P1 + R1Ṗ1 + 2Ṙ2P2 + R2Ṗ2). (C40)

Differentiation of Eq. (C40) with respect to time gives

R2
c0

d4Rc

dt4
= R̈1

(
2P1

ρl
− 3Ṙ2

1

)
+ R̈2

(
2P2

ρl
− 3Ṙ2

2

)
+ 1

ρl
(3Ṙ1Ṗ1 + R1P̈1 + 3Ṙ2Ṗ2 + R2P̈2). (C41)

Expressions for Ṗj and P̈j should be calculated up to leading terms as well. In this approximation, Eq. (C5) gives

Ṗj = Ṙ j

R j

[
2σl

R j
− 3γ Pgj

(
Rj0

Rj

)3γ
]

− Ṗac, (C42)

P̈j = R̈ j

R j

[
2σl

R j
− 3γ Pgj

(
Rj0

Rj

)3γ
]

+
Ṙ2

j

R2
j

[

3γ (3γ + 1)Pgj

(
Rj0

Rj

)3γ

− 4σl

R j

]

− P̈ac. (C43)

Substituting Eqs. (C42) and (C43) into Eq. (C41) and then substituting the result into Eq. (C35), one obtains

H = Rsρs(Q1 + Q2)
2ρl

(
1 − Rc0

Rs

)2

, (C44)
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where

Qj = R̈ j

ρl

[
2σl

R j
− 3γ Pgj

(
Rj0

Rj

)3γ

+ 2Pj − 3ρl Ṙ2
j

]

+
Ṙ2

j

ρlR j

[
2σl

R j
+ 3γ (3γ − 2)Pgj

(
Rj0

Rj

)3γ
]

− 3Ṙ j Ṗac + RjP̈ac

ρl
. (C45)

Substitution of Eq. (C44) into Eqs. (C29) and (C30) makes them ordinary differential equations of second order with respect
to the time derivatives of Rj .
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