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The volume oscillation of a cylindrical bubble in
a microfluidic channel with planar elastic walls is
studied. Analytical solutions are found for the bulk
scattered wave propagating in the fluid gap and the
surface waves of Lamb-type propagating at the fluid–
solid interfaces. This type of surface wave has not yet
been described theoretically. A dispersion equation for
the Lamb-type waves is derived, which allows one to
evaluate the wave speed for different values of the
channel height h. It is shown that for h<λt, where λt

is the wavelength of the transverse wave in the walls,
the speed of the Lamb-type waves decreases with
decreasing h, while for h on the order of or greater than
λt, their speed tends to the Scholte wave speed. The
solutions for the wave fields in the elastic walls and
in the fluid are derived using the Hankel transforms.
Numerical simulations are carried out to study the
effect of the surface waves on the dynamics of a bubble
confined between two elastic walls. It is shown that
its resonance frequency can be up to 50% higher than
the resonance frequency of a similar bubble confined
between two rigid walls.

1. Introduction
This study is inspired by the use of bubbles in
acoustically activated microfluidic systems [1]. An
example of such a system is described by Rabaud et al.
[2]: micrometre-size cylindrical bubbles are positioned
in a fluid channel, 25 µm in depth, confined by elastic
walls which are set into oscillation by a vibrating glass
rod moulded in the upper wall. Under such conditions,
the bubble dynamics exhibit a number of interesting

2016 The Author(s) Published by the Royal Society. All rights reserved.
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Figure 1. A cylindrical bubble in a fluid channel between two elastic plane walls. (Online version in colour.)

effects, such as the generation of surface waves propagating along the solid–fluid interfaces and
the self-organization of bubbles in crystal-like structures where equilibrium distances between
bubbles are much smaller than distances that are predicted by the theory of secondary Bjerknes
forces [3]. Another phenomenon of interest is acoustic microstreaming generated by bubbles in
microfluidic devices [4]. This phenomenon is used for micromixing of fluids [5] and sorting of
microparticles and cells [6,7]. A variety of experimental data on the dynamics of bubbles in
narrow planar channels can be found in a series of recent papers [8–13], where both single bubbles
and pairs of interacting bubbles are investigated.

Available theoretical models on the dynamics of cylindrical bubbles in planar channels
consider only bulk scattered waves generated by the bubble oscillation in the fluid gap [14–16].
These models are appropriate if the walls of the channel are rigid. There are no models that allow
for surface waves, which are generated at the solid–fluid interfaces if the channel walls are elastic,
whereas experimental observations show that surface waves can play a decisive role in the motion
of the fluid layer [2].

In acoustics, several types of surface waves are encountered [17]. The surface waves relevant
to our study are Rayleigh, Scholte and Lamb waves, so it is pertinent to remind their definitions.
Rayleigh waves are surface waves that travel at an interface between an elastic solid and a
vacuum. The existence of these waves was theoretically predicted by Lord Rayleigh in 1885 [18].
The speed of Rayleigh waves is slightly less than that of shear waves propagating in the body of
an elastic solid. Scholte waves are surface waves that propagate at an interface between an elastic
solid and a fluid. They are named after Scholte, who discovered them in 1947 [19]. Scholte waves
are slower than Rayleigh waves. Lamb waves propagate in an elastic plate placed in a vacuum
or a fluid [20]. The mathematical analysis of these waves was first developed by Lamb in 1917
[21]. Lamb waves are divided into symmetric and antisymmetric types depending on whether
the motion of the elastic medium is symmetric or antisymmetric about the middle plane of the
elastic plate.

Although the type of surface waves considered in our study is intimately related to the types
described above, it is different from them. In a certain sense, the case under study is opposite to
the case considered by Lamb because we deal with surface waves propagating in a fluid channel
embedded in an elastic solid. To the best of our knowledge, this case has not been considered
as yet. Our study provides a dispersion equation for this type of surface waves, which allows
one to evaluate the speed of the surface waves for different values of the channel height. The
ultimate purpose of our study is to develop a theoretical model for the volume oscillation of a
cylindrical bubble placed between two planar elastic walls, allowing for both bulk and surface
waves generated in this system. It should be emphasized that we deal with a special case of
bubble confinement. Indeed, the channel height is so small with respect to the bubble size that
the bubble always remains in contact with the walls, which leads to a shape close to a cylinder,
as depicted in figure 1. Therefore, there is no possibility for the bubble to take the spherical shape
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or be at a distance from the walls. This fact is a result of the design of microfluidic devices of our
interest [2], which makes our case different from those implied by Ilinskii et al. [15] and Leighton
et al. [22–24].

2. Problem formulation and solution
Let us consider a cylindrical gas bubble located in a fluid channel of height h between two
planar elastic walls (figure 1). The bubble undergoes volume oscillation in response to an imposed
acoustic pressure field. The bubble oscillation is considered to be linear and dependent on time
as exp(−iωt). For simplicity, the time factor will be omitted from equations. Quantities related to
the upper and lower walls will be denoted by subscripts 1 and 2, respectively. The action of the
bubble on the fluid–solid interfaces is modelled as a normal harmonic point load. Because the
problem under consideration is axially symmetric, cylindrical coordinates are used, whose origin
is located in the middle of the bubble and the z-axis is perpendicular to the surface of the walls, as
shown in figure 1. It should be emphasized that the wave field in the fluid channel consists of two
components. One component is the bulk scattered wave caused by the bubble radial oscillation.
The second component is caused by the surface waves that propagate in the elastic walls and
which, in the process of this propagation, induce perturbations in the fluid. This component will
be called surface waves in the fluid channel.

The calculation consists of the following stages. The equations for the surface waves in the
elastic walls and in the fluid channel are derived in §2a and §2b, respectively. The derivation is
based on Hankel transforms. The boundary conditions on the solid–fluid interfaces are obtained
in §2c. The dispersion equation for the surface wave speed is considered in §2d. The resulting
expressions for the surface waves in the space domain are calculated by the inverse Hankel
transforms in §2e. The equations for the bulk scattered wave in the fluid channel are given in
§2f. The boundary conditions on the side bubble surface are obtained in §2g. The equation of
bubble oscillation is derived in §2h.

(a) Waves in the elastic walls
As shown in figure 1, the walls occupy the space with |z|> h/2. The displacement vector of the
jth wall (j = 1, 2) can be written as

uj = ∇ϕj + ∇ × ψ j, (2.1)

with ϕj and ψ j being called the scalar and vector potentials, respectively. Equation (2.1) is used
as the most general mathematical representation for an arbitrary vector field (e.g. [17] or [25]). In
the view of axial symmetry, the dependence on the angular coordinate θ is absent and hence ϕj
and ψ j can be written as ϕj = ϕj(r, z) and ψ j =ψj(r, z)eθ , respectively, where eθ is the unit azimuth
vector. The function ϕj and ψj obey the following equations [25]:

1
r
∂

∂r

(
r
∂ϕj

∂r

)
+ ∂2ϕj

∂z2 + k2
l ϕj = 0 (2.2)

and

1
r
∂

∂r

(
r
∂ψj

∂r

)
+ ∂2ψj

∂z2 +
(

k2
t − 1

r2

)
ψj = 0, (2.3)

where kl =ω/cl and kt =ω/ct are the wavenumbers of the longitudinal and transverse waves in
the solid, respectively. The speeds of these waves, cl and ct, are given by [17]

cl =
√
λ+ 2μ
ρs

and ct =
√
μ

ρs
, (2.4)
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where λ and μ are the Lamé coefficients of the walls (μ is also called shear modulus) and ρs is the
wall density. The components of the displacement vector uj are calculated by [25]

ujr = ∂ϕj

∂r
− ∂ψj

∂z
and ujz = ∂ϕj

∂z
+ 1

r

∂(rψj)

∂r
. (2.5)

Solutions to equations (2.2) and (2.3) can be found by applying Hankel transforms with respect
to the radial variable r. The Hankel transform of order n of a function f (r) is defined as [26]

f Hn (k) =
∫∞

0
f (r)Jn(kr)r dr, (2.6)

where k is the parameter of the Hankel transform and Jn is the Bessel function of the first kind of
order n. The inverse transform is given by

f (r) =
∫∞

0
f Hn (k)Jn(kr)k dk. (2.7)

Applying the Hankel transforms of zero and first orders to equations (2.2) and (2.3), respectively,
one obtains

d2ϕ
H0
j

dz2 − q2
l ϕ

H0
j = 0 (2.8)

and

d2ψ
H1
j

dz2 − q2
tψ

H1
j = 0, (2.9)

where

q2
l = k2 − k2

l and q2
t = k2 − k2

t . (2.10)

Solutions of equations (2.8) and (2.9) which remain finite for large values of |z| are

ϕ
H0
1 =Φ1(k)e−ql(z−h/2), (2.11)

ψ
H1
1 =Ψ1(k)e−qt(z−h/2), (2.12)

ϕ
H0
2 =Φ2(k)eql(z+h/2) (2.13)

and ψ
H1
2 =Ψ2(k)eqt(z+h/2), (2.14)

where Φj(k) and Ψj(k) are functions to be determined from the boundary conditions on the solid–
fluid interfaces at z = ±h/2.

Application of the Hankel transform to equations (2.5) yields

uH1
jr = −kϕH0

j −
dψH1

j

dz
and uH0

jz =
dϕH0

j

dz
+ kψH1

j , (2.15)

Substituting equations (2.11)–(2.14) into equations (2.15), one finds

uH1
1r = −kΦ1(k)e−ql(z−h/2) + qtΨ1(k)e−qt(z−h/2), (2.16)

uH0
1z = −qlΦ1(k)e−ql(z−h/2) + kΨ1(k)e−qt(z−h/2), (2.17)

uH1
2r = −kΦ2(k)eql(z+h/2) − qtΨ2(k)eqt(z+h/2) (2.18)

and uH0
2z = qlΦ2(k)eql(z+h/2) + kΨ2(k)eqt(z+h/2). (2.19)
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(b) Surface waves in the fluid channel
The fluid area corresponds to −h/2 ≤ z ≤ h/2. The displacement vector in the fluid can be
written as

uf = ∇ϕf, (2.20)

where the potential ϕf obeys the equation [27]

1
r
∂

∂r

(
r
∂ϕf

∂r

)
+ ∂2ϕf

∂z2 + k2
f ϕf = 0, (2.21)

in which kf = ω/cf and cf is the speed of sound in the fluid. The fluid velocity corresponding to uf
is vf = −iωuf. The components of uf are calculated by

ufr = ∂ϕf

∂r
and ufz = ∂ϕf

∂z
. (2.22)

Applying the Hankel transform of zero order to equation (2.21), one obtains

d2ϕ
H0
f

dz2 − q2
f ϕ

H0
f = 0, (2.23)

where

q2
f = k2 − k2

f . (2.24)

The general solution of equation (2.23) is given by

ϕ
H0
f =Φf1(k)eqf(z−h/2) +Φf2(k)e−qf(z+h/2), (2.25)

whereΦf1(k) andΦf2(k) are functions to be determined from the boundary conditions at z = ±h/2.
Application of the Hankel transform to equations (2.22) yields

uH1
fr = −kϕH0

f and uH0
fz = dϕH0

f
dz

. (2.26)

Substituting equation (2.25) into equations (2.26), one finds

uH1
fr = −k

[
Φf1(k)eqf(z−h/2) +Φf2(k)e−qf(z+h/2)

]
(2.27)

and

uH0
fz = qf

[
Φf1(k)eqf(z−h/2) −Φf2(k)e−qf(z+h/2)

]
. (2.28)

(c) Boundary conditions on the solid–fluid interfaces
The boundary conditions on the surfaces of the elastic walls are written as follows [25,28]:

u1z = ufz at z = h
2

, u2z = ufz at z = −h
2

, (2.29)

T1rz = 0 at z = h
2

, T2rz = 0 at z = −h
2

(2.30)

and T1zz = −pf − Q
δ(r)
2πr

at z = h
2

, T2zz = −pf − Q
δ(r)
2πr

at z = −h
2

, (2.31)

where Tjrz and Tjzz are the shear and normal stresses in the walls, pf is the fluid pressure
corresponding to uf, Q is the magnitude of the point load produced by the bubble at the points
with r = 0 and z = ±h/2 and δ(r) is the Dirac delta function. Equations (2.29) follow from the
continuity of the normal displacement at the solid–fluid interfaces, equations (2.30) mean that the
shear stress vanishes at the interfaces and equations (2.31) describe the normal stress balance at
the interfaces.
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The expressions for Tjrz, Tjzz and pf are given by [25,27]

Tjrz =μ

(
∂ujr

∂z
+ ∂ujz

∂r

)
, (2.32)

Tjzz = (λ+ 2μ)
∂ujz

∂z
+ λ

r

∂(rujr)

∂r
(2.33)

and pf = ρfω
2ϕf, (2.34)

where ρf is the fluid density. Applying the Hankel transforms to equations (2.29)–(2.34), one
obtains

uH0
1z = uH0

fz at z = h
2

, uH0
2z = uH0

fz at z = −h
2

, (2.35)

TH1
1rz = 0 at z = h

2
, TH1

2rz = 0 at z = −h
2

, (2.36)

TH0
1zz = −pH0

f − Q
2π

at z = h
2

, TH0
2zz = −pH0

f − Q
2π

at z = −h
2

, (2.37)

TH1
jrz = −μ

⎡
⎣2k

dϕH0
j

dz
+ (2k2 − k2

t )ψH1
j

⎤
⎦ , (2.38)

TH0
jzz =μ

⎡
⎣(2k2 − k2

t )ϕH0
j + 2k

dψH1
j

dz

⎤
⎦ (2.39)

and pH0
f = ρfω

2ϕ
H0
f . (2.40)

Substitution of equations (2.11)–(2.14), (2.17), (2.19), (2.25), (2.28) and (2.38)–(2.40) into equations
(2.35)–(2.37) yields the following equations for the functions Φj(k), Ψj(k), Φf1(k) and Φf2(k):

kΨ1 − qlΦ1 = qf

(
Φf1 −Φf2e−qfh

)
, (2.41)

kΨ2 + qlΦ2 = qf

(
Φf1e−qfh −Φf2

)
, (2.42)

2kqlΦ1 − (2k2 − k2
t )Ψ1 = 0, (2.43)

2kqlΦ2 + (2k2 − k2
t )Ψ2 = 0, (2.44)

(2k2 − k2
t )Φ1 − 2kqtΨ1 = −ρfω

2

μ

(
Φf1 +Φf2e−qfh

)
− Q

2πμ
(2.45)

and (2k2 − k2
t )Φ2 + 2kqtΨ2 = −ρfω

2

μ

(
Φf1e−qfh +Φf2

)
− Q

2πμ
. (2.46)

The waves produced by the bubble in the elastic walls are symmetric, because the walls are
assumed to be identical and the action of the bubble on them is symmetric about the point z = 0.
Therefore, the following conditions should be met [17]:

uH1
1r

(
z = h

2

)
= uH1

2r

(
z = −h

2

)
and uH0

1z

(
z = h

2

)
= −uH0

2z

(
z = −h

2

)
. (2.47)

From equations (2.16)–(2.19), it follows that conditions (2.47) are met if

Φ2(k) =Φ1(k) and Ψ2(k) = −Ψ1(k). (2.48)

Substitution of equations (2.48) into equations (2.41)–(2.46) shows that

Φf2(k) =Φf1(k) =Φf(k), (2.49)
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and that only three of these equations remain independent. As a result, we obtain the
following set:

qlΦ1 − kΨ1 + qf(1 − e−qfh)Φf = 0, (2.50)

2kqlΦ1 − (2k2 − k2
t )Ψ1 = 0 (2.51)

and (2k2 − k2
t )Φ1 − 2kqtΨ1 + ρfω

2

μ
(1 + e−qfh)Φf = − Q

2πμ
. (2.52)

The solutions of this set are

Φ1(k) = −2k2 − k2
t

D(k)
Q

2πμ
, (2.53)

Ψ1(k) = − 2kql

D(k)
Q

2πμ
(2.54)

and Φf(k) = − k2
t ql

qf(1 − e−qfh)D(k)
Q

2πμ
, (2.55)

where

D(k) = (2k2 − k2
t )2 − 4k2qlqt + ρfk4

t ql

ρsqf

1 + e−qfh

1 − e−qfh
. (2.56)

(d) Dispersion equation for surface waves
The theoretical analysis of Rayleigh waves produced by a point load, based on the use of Hankel
integral transforms, is given in a book by Achenbach [25]. An analogous consideration of Scholte
waves is presented by Zhu et al. [28]. These works show that at large distances from the loading
point, where general solutions similar to equations (2.53) and (2.54) turn into far-field expressions
giving the Rayleigh and Scholte waves, the dispersion equations for these waves are identical to
the denominators of the general solutions similar to equations (2.53) and (2.54). This follows from
the fact that a vanishing denominator gives rise to a dominant term in the spectrum of emitted
waves. Analogously, in our case the dispersion equation for the surface waves of our interest is
given by

D(k) = (2k2 − k2
t )2 − 4k2qlqt + ρfk4

t ql

ρsqf

1 + e−qfh

1 − e−qfh
= 0. (2.57)

The roots of this equation are the wavenumbers of Lamb-type symmetric waves that propagate
in the microfluidic system under study. If the fluid density tends to zero, ρf → 0, equation (2.57)
reduces to the equation for Rayleigh waves [17,25], while for infinite channel height, h → ∞, it
reduces to the equation for Scholte waves [17,28]. Equation (2.57) allows one to evaluate the
surface wave speed as a function of h. Examples of such evaluations are presented in §3a. It is
noteworthy that equation (2.57) is derived for the first time so it can be considered as one of the
main results of this study.

(e) Expressions for u1, uf and pf in the space domain
Applying the inverse Hankel transform to equations (2.16), (2.17), (2.27), (2.28) and (2.40) and
using equations (2.53)–(2.55), one obtains

u1r = Qkt

2πμ
Isr(r, z), (2.58)

u1z = Qkt

2πμ
Isz(r, z), (2.59)

ufr = Qkt

πμ
Ifr(r, z), (2.60)
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ufz = −Qkt

πμ
Ifz(r, z) (2.61)

and pf = −Qρfω
2

πμ
Ip(r, z), (2.62)

where

Isr(r, z) =
∫∞

0

1

D̃(ξ )

[
(2ξ2 − 1)e−q̃lkt(z−h/2) − 2q̃lq̃te−q̃tkt(z−h/2)

]
J1(ξktr)ξ2dξ , (2.63)

Isz(r, z) =
∫∞

0

q̃l

D̃(ξ )

[
(2ξ2 − 1)e−q̃lkt(z−h/2) − 2ξ2e−q̃tkt(z−h/2)

]
J0(ξktr)ξdξ , (2.64)

Ifr(r, z) =
∫∞

0

q̃le−q̃fkth/2 cosh(q̃fktz)

q̃fD̃(ξ )(1 − e−q̃fkth)
J1(ξktr)ξ2dξ (2.65)

Ifz(r, z) =
∫∞

0

q̃le−q̃fkth/2 sinh(q̃fktz)

D̃(ξ )(1 − e−q̃fkth)
J0(ξktr)ξdξ (2.66)

and Ip(r, z) =
∫∞

0

q̃le−q̃fkth/2 cosh(q̃fktz)

q̃fD̃(ξ )(1 − e−q̃fkth)
J0(ξktr)ξdξ . (2.67)

Equations (2.63)–(2.67) are expressed in terms of normalized quantities that are defined as follows:

ξ = k
kt

= ct

c
, ξf = kf

kt
= ct

cf
, ξl = kl

kt
= ct

cl
, (2.68)

q̃f =
√
ξ2 − ξ2

f , q̃l =
√
ξ2 − ξ2

l , q̃t =
√
ξ2 − 1 (2.69)

and D̃(ξ ) = (2ξ2 − 1)2 − 4ξ2q̃lq̃t + ρfq̃l

ρsq̃f

1 + e−q̃fkth

1 − e−q̃fkth
, (2.70)

where c stands for the speed that corresponds to the wavenumber k. The normalization by kt

provides the simplest form of the equations. The method of numerical calculation of integrals
(2.63)–(2.67) is described in appendix A.

(f) Bulk wave in the fluid channel
According to Ilinskii et al. [15], the bulk scattered wave generated by the bubble oscillation in the
fluid channel can be represented by

vb = ∇ϕb, (2.71)

where vb is the fluid velocity and the velocity potential ϕb is given by the equation

ϕb = AH(1)
0 (kfr), (2.72)

in which H(1)
0 is the Hankel function of the first kind of order zero [29] and A is a constant to

be determined from the boundary conditions on the bubble surface. Equations (2.71) and (2.72)
satisfy the wave equation for the fluid motion in the case of cylindrical symmetry. The fluid
pressure corresponding to vb is calculated by

pb = iωρfϕb. (2.73)

It should be mentioned that the wavelength of the bulk wave, λf = 2π/kf, is large compared with
the wavelength of the surface waves as well as to the dimensions of the microfluidic system
under study. This means that the spatial scale of the variations of pb is much greater than that of
the perturbations produced by the surface waves. For this reason, pb does not contribute to the
above perturbations and hence does not appear in equation (2.31).

 on April 15, 2016http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


9

rspa.royalsocietypublishing.org
Proc.R.Soc.A472:20160031

...................................................

(g) Boundary conditions on the bubble surface
Let us assume that the time-varying bubble radius can be represented as

R(t) = R0(1 + ae−iωt), (2.74)

where R0 is the equilibrium bubble radius. Considering that the net fluid velocity is the sum of
the velocities of the bulk and surface waves, the boundary condition for the normal velocity at
the side bubble surface can be written as

vbr + vfr = −iωR0a at r = R0, (2.75)

where vbr is the radial component of vb, vfr is the radial component of the surface wave velocity,
given by vfr = −iωufr, and the right-hand term is the amplitude of the velocity of the bubble
oscillation. Assuming that h is small compared with the transverse wavelength λt = 2π/kt, the
value of ufr can be taken at z = 0; see equations (2.60) and (2.65). Substitution of equations (2.60),
(2.71) and (2.72) into equation (2.75) yields

A = iω

kfH
(1)
1 (kfR0)

[
R0a − ktQ

πμ
Ifr(R0, 0)

]
. (2.76)

The pressure balance at the bubble surface is defined as

pg = P0 + pac + pst + (pb + pf)e
−iωt at r = R0, (2.77)

where pg is the gas pressure within the bubble, P0 is the hydrostatic pressure in the fluid, pac is the
driving acoustic pressure and pst is the surface tension pressure. Calculating the bubble volume as

V = πR2h ≈ πR2
0h(1 + 2ae−iωt) = V0(1 + 2ae−iωt), (2.78)

one obtains

pg = Pg0

(
V0

V

)γ
≈ Pg0(1 − 2γ ae−iωt), (2.79)

where Pg0 is the equilibrium gas pressure and γ is the ratio of specific heats of the gas. The
acoustic pressure pac is specified by

pac = Pae−iωt, (2.80)

where Pa denotes the acoustic pressure amplitude. For pst, one has

pst = σf

R
≈ σf

R0
(1 − ae−iωt), (2.81)

where σf is the surface tension coefficient for the fluid–gas interface. Substituting equations (2.62),
(2.72), (2.73) and (2.79)–(2.81) into equation (2.77) and separating constant and time-varying
terms, one obtains

Pg0 = P0 + σf

R0
(2.82)

and

a
(

2γPg0 − σf

R0

)
= ρfω

2Q
πμ

Ip(R0, 0) − iωρfAH(1)
0 (kfR0) − Pa. (2.83)

Substituting equations (2.76) and (2.82) into equation (2.83) and using the second of equations
(2.4) to eliminate μ, one finds the following expression for a:

a = −(Pa + C)
B

, (2.84)
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where

B = 2γP0 + (2γ − 1)σf

R0
− ρfω

2R2
0H(1)

0 (αf)

αfH
(1)
1 (αf)

(2.85)

and

C = −ρfk2
t Q

πρs

[
Ip(R0, 0) − αtH

(1)
0 (αf)

αfH
(1)
1 (αf)

Ifr(R0, 0)

]
, (2.86)

αf = kfR0 and αt = ktR0.

(h) Equation for bubble oscillation
To derive an equation for the amplitude of the bubble oscillation a, we need an expression
for the load magnitude Q in terms of a. Clearly, Q should be proportional to the variation
of the gas pressure in the bubble, given by equation (2.79). It is admissible to assume that Q
is also proportional to the area of the lateral section of the bubble, πR2

0. Therefore, Q can be
represented as

Q = −2πγPg0R2
0εa, (2.87)

where ε is a proportionality coefficient that allows for the fact that the effective area that describes
the action of the bubble on the wall can be different from πR2

0. In addition, ε can be a complex
quantity because a phase shift can exist between the variation of the gas pressure and the reaction
of the walls to it. This occurs because the walls may behave as a viscoelastic material with complex
elastic and shear moduli, which leads to a phase lag between stress and strain [30].

Substitution of equation (2.87) into equations (2.84) and (2.86) yields

a = −Pa

B + S
, (2.88)

where

S = 2γPg0ρfα
2
t ε

ρs

[
Ip(R0, 0) − αtH

(1)
0 (αf)

αfH
(1)
1 (αf)

Ifr(R0, 0)

]
. (2.89)

Equation (2.88) allows one to calculate the response of the bubble as a function of ε for
different values of the material and acoustic parameters. It should be mentioned that for ε= 0,
equation (2.88) reduces to the result obtained by Ilinskii et al. [15] for a cylindrical bubble between
two rigid walls.

3. Numerical simulations and experimental verification

(a) Speed of surface waves
The speed of the surface waves propagating at the solid–fluid interfaces is given by
solutions of equation (2.57). Numerical evaluations were performed for the following values
of the physical parameters: Young’s modulus E = 1.6 MPa, Poisson’s ratio σ = 0.499, ρs =
970 kg m−3, cf = 1481 m s−1 and ρf = 998 kg m−3. These values are typical of the elastic walls of a
microfluidic channel made of polydimethylsiloxane (PDMS) and filled with water. The transverse
wave speed for these parameters is ct = 23.456 m s−3. This quantity sets the upper limit for the
speed of surface waves [17]. The evaluations show that equation (2.57) has one real root which
gives a frequency-dependent speed cs < ct. Figure 2 exemplifies the frequency dependence of cs

at h = 25 µm. The dependence of cs on h is demonstrated by figure 3. Note that the values of
cs are normalized by ct, and those of h, by λt = ct/f , where f is the driving frequency. With this
normalization, the plot shown in figure 3 remains the same for all frequencies. Figure 3 reveals
that cs increases with increasing h and tends to the speed of the Scholte wave, cSch, when h tends
to λt. However, at small h, the presence of the second boundary makes cs much smaller than cSch.
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(b) Solutions at small and large distances from the bubble
The theory of surface waves predicts that the behaviour of integrals (2.63)–(2.67) should coincide
with the behaviour of the Hankel functions of zero and first orders at large distances from the
loading point [17]. The calculation of the integrals by the method described in appendix A
conforms to this expectation. As an example, figure 4 compares the behaviour of the integral
Isz, which describes the vertical displacement of wall 1, and the Hankel function H(1)

0 (ksr), where
ks =ω/cs is the wavenumber of the surface wave, given by equation (2.57). The calculations were
made at f = 30 kHz and h = 25 µm, the material parameters being the same as in the preceding
subsection. Figure 4a shows Re{Isz(r, h/2)} (solid) and Re{iH(1)

0 (ksr)} (dashed) as functions of radial
distance r which is normalized by λs = 2π/ks. The phases of these functions are compared in
figure 4b. Note that the vertical lines in this figure do nothing but show that the sign of the
phase is changed by jump. The comparison reveals that the functions give the same result for
distances exceeding 0.4λs. However, for smaller distances, there is a considerable difference in
their behaviour. Therefore, the approximation by the Hankel function is not suitable for use in
equations (2.88) and (2.89) which describe the bubble oscillation.
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Figure 4. (a,b) Comparison of the integral Isz(r, h/2) (solid line) and the Hankel function H(1)0 (ksr) (dashed line).

(c) Resonance curves
Comparison with experimental measurements (presented in the next subsection) shows that
agreement with the theoretical model is achieved if the parameter ε is considered as a complex
quantity whose phase is proportional to the bubble radius R0. Therefore, examples of resonance
curves were calculated assuming that

ε= ε1 exp(iε2ksR0), (3.1)

where ε1 and ε2 serve as variation parameters.
Resonance curves shown in figure 5 were calculated by equation (2.88) for h = 25 µm and f =

30 kHz, varying R0 in the range from 16 to 83 µm. The material parameters for the solid and the
fluid were the same as in the preceding subsections. The parameters related to the gas behaviour
and the acoustic excitation were as follows: σf = 0.072 N m−1, γ = 1.4, P0 = 101.3 kPa and Pa =
10 kPa. Figure 5a shows resonance curves for increasing values of ε1, assuming ε2 = 0. It is seen
that at ε1 = 0 (no surface waves), the resonance peak is at R0f = 1.1 m s−1, which corresponds
to the result obtained by Ilinskii et al. [15]. When ε1 is increased, the resonance peak shifts to
larger values of R0 and increases in magnitude. At ε1 = 1, the resonance peak is found to be at
R0f = 1.5 m s−1 and its magnitude is maximal. Note that for ε1 = 1, the effective surface area by
which the bubble acts on the wall is equal to the area of the lateral section of the bubble. Further
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Figure 6. (a,b) Comparison of experimental (circles) and theoretical (solid line) results for bubble oscillation at 30 kHz.

increase of ε1 decreases the magnitude of the resonance peak, moving its position to larger values
of R0f , which, however, do not exceed 1.7 m s−1.

Figure 5b shows the evolution of resonance curves with increasing |ε2| at ε1 = 1. Increasing
|ε2| can be related to an increase of damping in the wall material, which leads to flattening
of resonance curves and decreasing resonance bubble radius. This behaviour is observed if ε2
is negative.

(d) Experimental verification
The experimental data shown by circles in figures 6–8 were adopted from work by Mekki-Berrada
et al. [31], where they were acquired by a microfluidic set-up described by Rabaud et al. [2].
This set-up has been already mentioned in the Introduction. The experimental data show the
normalized amplitude of bubble oscillation for cylindrical bubbles of different radii, placed in a
fluid channel, 25 µm in depth, confined by elastic walls made of PDMS. The bubble oscillation
is induced by a vibrating glass rod moulded in the upper channel wall about 150 µm above
the solid–fluid interface. The experimental data were obtained at three values of the driving
frequency: 30, 40 and 50 kHz. For each frequency, the measurements were made for a certain
range of bubble radii, which was dictated by experimental conditions.

The solid lines in figures 6–8 show the fitting of the experimental points by equation (2.88)
with the fitting parameter ε given by equation (3.1). The material parameters were taken as
pointed out in the preceding subsections. The theoretical curves were calculated at the following
values of ε1 and ε2: for 30 kHz, ε1 = 1.76, ε2 = −0.451; for 40 kHz, ε1 = 2.15, ε2 = −0.465; for 50 kHz,
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ε1 = 1.95, ε2 = −0.756. The parts (a) of the figures show fitting in the experimental measurement
range and the parts (b) show the view of the full theoretical curve. The normalization of the data is
performed by a maximal value in a depicted range. For this reason, the normalization is different
in figure 8a,b. The experimental data indicate that there is strong damping in the PDMS walls
since the resonance curves are very flat. As one can see, agreement between the theoretical and
experimental data is achieved if the values of the fitting parameters are changed with frequency.
This result suggests that both effective surface area of the bubble–wall contact and the damping
characteristics of the PDMS walls depend on frequency by a more complicated way than that
specified by equation (3.1). This problem calls for further consideration.

4. Conclusion
A theoretical model has been developed that describes the volume oscillation of an ultrasound-
activated cylindrical bubble situated in a fluid channel between two planar elastic walls. The
model includes both the bulk scattered wave, which propagates in the fluid gap, and the surface
waves of Lamb-type, which propagate at the solid–fluid interfaces. The force exerted by the
bubble oscillation on the channel walls, which is the source of the Lamb-type waves, was treated
as a normal harmonic point load. A dispersion equation for the above surface waves was derived,
which allows one to examine the dependence of the speed of these waves on the channel height
h. Such an equation was calculated for the first time, which makes it one of the main results of
the present study. It shows that for h<λt, where λt is the wavelength of the transverse wave in
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the elastic walls, the speed of the Lamb-type waves decreases with decreasing h, while for h → λt,
their speed tends to the Scholte wave speed.

The solutions for the wave fields produced by the Lamb-type waves in the elastic walls and in
the fluid channel were obtained using the Hankel transforms and expressed in terms of improper
integrals. A method was proposed for numerically evaluating the integral solutions. Numerical
simulations were carried out to examine the effect of the surface waves on the bubble dynamics.
It was shown that the resonance frequency of a cylindrical bubble confined between two identical
elastic walls could be up to 50% higher than the resonance frequency of a similar bubble confined
between two rigid walls.

Experimental verification of the theoretical model has been carried out using measured values
of the bubble oscillation amplitude, which were obtained for bubbles of different radii at three
values of the driving frequency. The fitting of experimental data was performed by using two
parameters. The first parameter describes the magnitude of the load exerted on the channel
walls by the variation of the bubble gas pressure. The second parameter describes the phase shift
between the variation of the bubble gas pressure and the reaction of the walls. It was found that
agreement between the theoretical and experimental data is achieved on condition that the fitting
parameters are considered frequency-dependent quantities.
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Appendix A. Calculation of the integral expressions
The denominator functions of the improper integrals (2.63)–(2.67) have zeros, which makes
direct numerical integration impossible. This difficulty can be overcome by using contour
integration and the residue theorem as proposed by Vrettos [32]. The calculation method will
be demonstrated here with integrals (2.65) and (2.67) as these integrals are used in the equation
of bubble oscillation.

Expressing the Bessel function J0 as a sum of the Hankel functions of the first and second kind

2J0(ξktr) = H(1)
0 (ξktr) + H(2)

0 (ξktr), (A 1)

substituting (A1) into equation (2.67) and replacing the real variable ξ with the complex variable
s = ξ + iτ , one obtains

2Ip(r, z) = I1 + I2, (A 2)

where

Ij =
∫∞

0
F(s, z)H(j)

0 (sktr)sds (A 3)

and

F(s, z) = q̃le−q̃fkth/2 cosh(q̃fktz)

q̃fD̃(s)(1 − e−q̃fkth)
. (A 4)

Note that the variable ξ is also replaced with s in the radical functions q̃f, q̃l and q̃t. As a result,
these functions become complex valued and branch points occur at s = ξf, ξl, 1, where ξf < ξl < 1
because it is assumed that cf > cl > ct; see equations (2.68). The pole of the integrand F(s, z) is
given by the root of the equation D̃(ξ ) = 0. This root, which will be denoted by ξs, corresponds to
a Scholte-type wave and ξs > 1 as the speed of the Scholte wave is smaller than ct; see the first of
equations (2.68). To make the integrand single valued and take into account the presence of the
pole, the integration contours Γ1 and Γ2 are taken as shown in figure 9.
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Figure 9. Integration contours in the complex wavenumber plane.

Integrating I1 along the contour Γ1 and using the fact that H(1)
0 (sktr) vanishes along the infinite

arc, one obtains

I1 = I11 + I12 + I13 + I14 + 2π iResp(ξs), (A 5)

where

I11 = −
∫∞

0
F+(iτ , z)H(1)

0 (iτktr)τdτ , (A 6)

I12 = −
∫ ξf

0
[F+(ξ , z) − F−(ξ , z)]H(1)

0 (ξktr)ξdξ , (A 7)

I13 = −
∫ ξl

ξf

[F+(ξ , z) − F−(ξ , z)]H(1)
0 (ξktr)ξdξ (A 8)

and I14 = −
∫ 1

ξl

[F+(ξ , z) − F−(ξ , z)]H(1)
0 (ξktr)ξdξ , (A 9)

the superscripts + and − denote that the function F(s, z) is calculated for the positive and negative
values of the imaginary part of the radicals q̃f, q̃l and q̃t, respectively, and Resp(ξs) is the residue
at the pole ξs which is calculated by [33]

Resp(ξs) =
[

q̃le−q̃fkth/2 cosh(q̃fktz)ξH(1)
0 (ξktr)

∂[q̃fD̃(ξ )(1 − e−q̃fkth)]/∂ξ

]
ξ=ξs

. (A 10)

Integrating I2 along the contour Γ2 and using the fact that H(2)
0 (sktr) vanishes along the infinite

arc, one obtains

I2 = −
∫∞

0
F−(−iτ , z)H(2)

0 (−iτktr)τdτ . (A 11)

Equations (A 7)–(A 9) can be simplified using the fact that F−(ξ , z) = [F+(ξ , z)]∗, where the
asterisk denotes the complex conjugate. Further, the sum of the integrals I11 and I2 can be
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transformed using the following identities:

F−(−iτ , z) = [F+(iτ , z)]∗, (A 12)

H(1)
0 (ix) = 2

π i
K0(x) (A 13)

and H(2)
0 (−ix) = − 2

π i
K0(x), (A 14)

where Kn(x) is the modified Bessel function of the second kind of order n [29]. As a result of these
operations, the final expression for the integral Ip(r,z) is found to be

Ip(r, z) = − 2
π

∫∞

0
Im{F+(iτ , z)}K0(τktr)τdτ − i

∫ ξf

0
Im{F+(ξ , z)}H(1)

0 (ξktr)ξdξ

− i
∫ ξl

ξf

Im{F+(ξ , z)}H(1)
0 (ξktr)ξdξ − i

∫ 1

ξl

Im{F+(ξ , z)}H(1)
0 (ξktr)ξdξ + π iResp(ξs), (A 15)

where Im{x} means the imaginary part of x. These integrals are nonsingular and convergent and
hence they can be calculated numerically without any difficulty.

Application of the same method to integral (2.65) yields

Ifr(r, z) = − 2
π

∫∞

0
Im{F+(iτ , z)}K1(τktr)τ 2dτ − i

∫ ξf

0
Im{F+(ξ , z)}H(1)

1 (ξktr)ξ2dξ

− i
∫ ξl

ξf

Im{F+(ξ , z)}H(1)
1 (ξktr)ξ2dξ − i

∫ 1

ξl

Im{F+(ξ , z)}H(1)
1 (ξktr)ξ2dξ + π iResfr(ξs), (A 16)

where the residue at the pole ξs is calculated by

Resfr(ξs) =
[

q̃le−q̃fkth/2 cosh(q̃fktz)ξ2H(1)
1 (ξktr)

∂[q̃fD̃(ξ )(1 − e−q̃fkth)]/∂ξ

]
ξ=ξs

. (A 17)
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