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Role of the Channel Geometry on the Bubble Pinch-Off in Flow-Focusing Devices
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The formation of bubbles by flow focusing of a gas and a liquid in a rectangular channel is shown to
depend strongly on the channel aspect ratio. Bubble breakup consists in a slow linear 2D collapse of the
gas thread, ending in a fast 3D pinch-off. The 2D collapse is predicted to be stable against perturbations of
the gas-liquid interface, whereas the 3D pinch-off is unstable, causing bubble polydispersity. During 3D
pinch-off, a scaling w,, ~ 7'/3 between the neck width w,, and the time 7 before breakup indicates that
breakup is driven by the inertia of both gas and liquid, not by capillarity.
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The production of monodisperse microbubbles is a cru-
cial issue in microfluidics [1], driven by applications in
food processing, pharmaceutical sciences, and medicine,
for example, for targeted drug delivery with ultrasound
contrast agent microbubbles [2]. Flow-focusing techniques
have proven to be powerful and versatile tools to achieve
monodisperse drops and bubbles. Their working principle
is based on a coflow of an internal gas phase and an
external liquid phase through a constriction, where the
gas is pinched off by the coflowing liquid to release bub-
bles. Various groups have used flow focusing to produce
monodisperse bubbles [3,4] and foams [5,6]. In most cases,
low-cost soft lithography techniques [7] are used: the
produced channels are then rectangular.

Despite the wide use of flow focusing, the precise influ-
ence of the channel geometry on the bubble formation
process remains unexplored, even though it ultimately
determines the bubble characteristics: size, polydispersity
and formation frequency. In this Letter, we clarify this
issue by characterizing in detail the various stages of the
formation process, notably the fast final breakup, for differ-
ent rectangular channel cross sections, from an elongated
rectangle to a square.

Flow-focusing devices consist of two inlet channels, one
for the liquid and one for the gas, which converge to a
narrow channel followed by an outlet channel [Fig. 1(a)].
We produced the devices by soft lithography techniques: a
mold was created from a negative photosensitive material
(SU-8 GM 1060, Gersteltec SARL) spin coated on a silicon
oxide substrate, to imprint [Fig. 1(b)] a reticulable polymer
layer (PDMS, Sylgard 184, Dow Corning), which was then
bonded to a glass cover plate in a plasma cleaner. Two
holes of diameter 1.0 mm were drilled in the glass, to
connect the inlet channels with Teflon tubes of outer di-
ameter 1.06 mm, through which gas and liquid were sup-
plied. Pressurized nitrogen was used, and its overpressure,
kept constant at 0.7 bar, was controlled by a pressure
regulator (PRG101-25, Omega, regulation accuracy
0.1%) connected to a pressure sensor (DPG1000B-30G,
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Omega). The liquid used was a 10% solution of dishwash-
ing liquid (Dreft, Procter & Gamble) in deionized water,
which wets optimally the channel walls [5]. It has a volu-
metric mass p = 10° kg/m3, a surface tension y =
0.03 N/m, and a viscosity = 1073 Pas. The liquid
flow rate was controlled by a syringe pump (PHD 22/
2000, Harvard Apparatus, flow rate reproducibility
0.05%). The setup was placed under a microscope
(Axiovert 40 CFL, Carl Zeiss) with a 40X objective, which
was connected to a high-speed camera (Photron Ultima
APX-RS). The camera provides 512 X 512 pixel images
(field of view 240 X 240 pm) at 10000 frames per second
(fps), to image the bubbles in the outlet channel [Fig. 1(c)],
and 32 X 128 pixel images (field of view 15 X 60 um) at
180000 fps (with an exposure time of 5.6 us), to resolve
the bubble formation and the pinch-off in the channel
(Fig. 2). We quantified the collapse leading to breakup by
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FIG. 1 (color online). (a) Sketch of the flow-focusing setup.
(b) Scanning electron micrograph of the imprint in the PDMS
slab of the channel of width 30 um and height 6 pum.
(c) Snapshot of the flow-focusing process: the central gas thread
is squeezed by the surrounding liquid flow, releasing monodis-
perse microbubbles, shaped almost as disks because of the
confinement in the third dimension.
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FIG. 2 (color online). Snapshots of the gas thread in two
regimes of collapse described in the text [18]. (a) The gas thread
is first squeezed inwards from the sides by the surrounding
liquid; w,, is its minimal width in the processed region (white
dashed rectangle). This regime is sketched in cross section in (b).
The gas thread experiences finally a fast pinch-off (c), where it is
squeezed radially in the cross section (d).

the minimum width w,,, of the gas thread [Fig. 2(a)], and
we followed its decrease until pinch-off. Actually, the
collapse is preceded by a phase during which the gas thread
penetrates and fills the channel; we do not study this phase
in this Letter. We used three different channels of length
50 pwm, with different aspect ratios for the rectangular
cross section: a long rectangle [case a, width W =
30 um and height H = 6 um; see Fig. 1(b)], a short
rectangle [case b, with a width (W = 30 wm) comparable
to its height (H = 20 um)], and a square (case c, W =
H =20 pm).

We plot for the three geometries the variation of w,,
during collapse, until breakup, in Fig. 3. We identify two
regimes. First, w,, decreases linearly with time. We call
this regime the 2D collapse, since w,, remains bigger than
the channel height, which means that the gas thread is
squeezed inwards from the sides [Fig. 2(b)]. The linear
decrease has been studied before [4]: at this stage, the gas
thread constricts the channel, and the liquid flowing at
imposed flow rate Q, is forced to squeeze the gas thread
at speed dw,,/dr ~ Q,, independently from the gas pres-
sure, the liquid viscosity, and the surface tension. Second,
there is a transition from the linear decrease of w,, to a fast
final pinch-off [Fig. 2(c)]. This happens precisely for w,, =
H (within less than 5%); hence, we call this regime the 3D
collapse, since the gas thread can be squeezed along any
direction [Fig. 2(d)]. Figure 3 also shows that the duration
of the 3D collapse is about 20 us, with no significant
dependence on the cross-section dimensions, contrary to
the 2D collapse which, as expected, becomes longer with
increasing aspect ratio W/H, and is absent for the square
channel [Fig. 3(c)].

Garstecki et al. [4] have suggested that the collapse
proceeds through a series of equilibria, and justified it on
one example, by proving the agreement between experi-
ment and the corresponding computation with surface
energy minimization. We now propose a more general

stability analysis against perturbations of the gas-liquid
interface, suggesting that the 2D collapse is always stable,
whereas the 3D collapse is always unstable. To determine
qualitatively the influence of the channel confinement on
the stability of both 2D and 3D collapses, we study the
linear stability of the gas thread against perturbations of its
interface in two simplified channel cross sections: a rect-
angle with W > H, and a circular tube, simpler than a
square channel and allowing for squeezing of the gas
thread along any direction, which is the essential ingredient
of the 3D collapse.
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FIG. 3 (color online). Evolution of the minimum width of the
gas thread w,, as a function of the time 7 = 7, — ¢ remaining
until final breakup, for the following cross sections (W X H,
both in um) (a) 30 X 6, (b) 30 X 20, (c) 20 X 20. The liquid
flow rates are (a) 20, (b) 20, and (c¢) 70 w€/min. Each curve
results from the superposition of independent events (indicated
by different symbols in cases b and c), which collapse on the
same master curve, showing the excellent reproducibility of the
system. The two regimes described in the text correspond to
different fits: first a linear one, and then a power law. Dashed
lines in (a) and (b) indicate the transition between the two
regimes, where the fitting curves intersect. The transition value
between 2D and 3D collapses is 6.1 wm in case a (H = 6 um),
and 19.1 um in case b (H =20 um). The instant of this
transition gives the duration 73 of the 3D collapse: 22 us in
case a, 25 us in case b, and 19 us in case c.
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In the rectangular geometry, we assume that the cross
section of the gas thread is as depicted in Fig. 2(b) a
rectangle of dimensions w, X H, bounded with two half-
circles of radius H/2. We thus neglect the thickness of the
lubrication films between the gas thread and the channel
walls, which is equivalent to assume Ca?? < 1 [8] with
the capillary number Ca = nv,/y. In our experiments, the
typical velocity vy is lower than 3 m/s; thus Ca?/? < 0.2.
We also assume that the fluid flow follows the Hele-Shaw
approximation: the spatial variations in the flow along z are
much faster than along x and y [see Fig. 2(b) for the
definition of the axes], which holds if W —wy> H.
Then the velocity writes v(x, y, z) = (1 — 4z2/H?)ii(x, y),
and averagmg the Navier-Stokes equation in the gap gives
91 p a’; + 6p(u V)u = —Vp - 12"u Without the
convection term, this equation is the well-known Darcy
law. The ratio between the convective and viscous terms
gives a Reynolds number Re =~ H?u/10vW, with W the
characteristic length for the spatial variations of the gap-
averaged velocity, and v = n/p the kinematic viscosity.
We evaluate Re for the dimensions of our elongated rect-
angular channel: H = 6 um, W = 30 um, and since u <
3 m/s in our experiments, we compute Re < 0.4. We thus
use Darcy law in the subsequent analysis.

We assume that the unperturbed flow is at constant
velocity i = uyé,, and compute the growth rate of a small
perturbation of the interface of the form w(x, 1) = wy +
eRe(e™77) with k real [10]. For this, we express i and p,
using as boundary conditions the continuity of velocity at
the interface dw/dt = v, — v, dw/dx, and the continuity
of normal stresses p = —yC (Laplace pressure), with C =~
2/H — 9’w/dx? the interfacial curvature, assuming ke <<
1. To close the system, we express mass conservation
as 9Q,/0x = 2HOow/dt, with the flow rate Q, =

2/ ng 2 zf VVZ)//ZZ dyv. The growth rate is then the solution

of the dispersion relation:
12v\[ o .
<U+?>|:E(l +§2)_21u0§2:| +

where & = tanhk(W — wy). It is easy to prove from this
relation that the real part of the growth rate is always
negative; hence, the 2D collapse is always stable.

To study the stability analysis in a 3D, axisymmetric
case, we start from a gas thread of constant radius ry in a
tube of radius R. The present analysis is therefore a special
case of the more general stability analysis of core-annular
flows [11], where two fluids flow concentrically in a tube.
Guillot ef al. [12] have recently solved this problem ne-
glecting convection. We adapt their results, neglecting gas
viscosity 1, (9,/m = 0.017 for nitrogen): for a perturba-
tion of the gas thread of the form r(x,7) = ry+
eRe(e**17") we obtain

oy _ 4iVP,R?
16nRa5[

2yk*E

:0,

a*(1 — a®k

+ (1 — 442 + 3a* — 4a* Ina)(K* — 124):|,

with a = ry/R, k = kro, and VP, = —ap/dx the pressure
gradient in the unperturbed case. The growth rate Re(o) is
positive for 0 =< Re(k) = 1 and Im(k) = O: contrary to the
2D case, the 3D collapse is therefore always unstable. The
analysis suggests that the gas thread is destabilized as soon
as it can be squeezed radially. This is supported by the fact
that the transition between 2D and 3D collapses happens
exactly for w,, = H [Figs. 3(a) and 3(b)].

We show now that the final breakup is not the result of
the growth of a capillary instability. The physical mecha-
nisms driving the 3D collapse can be inferred from the
asymptotic behavior of w,, just before breakup [13]. To do
so, we now keep only the data in the 3D collapse regime,
and plot logw,, versus logr in Fig. 4. All data collapse on
power-law master curves, with exponents equal to 0.33 =
0.03, compatible with a power law of exponent 1/3. Such
an exponent was reported for an asymmetric bubble pinch-
off [14], and is related to a nonzero gas flow in the neck.
Here, just as in [14], the gas flowing in the neck sucks the
surrounding liquid, accelerating the pinch-off compared to
the usual bubble pinch-off, where the balance between
liquid inertia and surface tension would yield a 1/2 ex-
ponent [15]. Hence, although our 3D collapse may initiate
from a capillary destabilization of the gas thread, it is
eventually driven by gas and liquid inertia. Together with
the results of Garstecki et al. [4], who showed experimen-
tally that the 2D collapse proceeds at a speed independent
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FIG. 4 (color online). Logarithm of the minimum width of the
gas thread w,, as a function of the logarithm of the time 7, — ¢
until final breakup. The line represents the best fit of the data: its
slope is (a) 0.33 (cross section 30 X 20 wm?) and (b) 0.30 (cross
section 20 X 20 um?). Different symbols represent independent
experiments. We do not present the results for the channel of
cross section 30 X 6 um?, for which only three data points are
in the 3D collapse regime: in that case, the slope is 0.35.
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from the surface tension, this shows that the entire collapse
does not depend on surface tension, but solely on the
inertia of both liquid and gas.

Finally, we measured the polydispersity of the produced
bubbles, by imaging them in the outlet channel at a wider
field of view. We measured the area of approximately 100
bubbles, each bubble being measured on 50 images to
improve the accuracy. We used as the polydispersity index
(PDI) the ratio of the standard deviation to the average of
the area. Our measured PDI are 0.1% = 0.1% (case a),
0.3% = 0.1% (case b) and 1.0% = 0.1% (case c), confirm-
ing that flow focusing is an efficient way to produce very
monodisperse bubbles. Moreover, the PDI decreases with
increasing aspect ratio of the channel cross section, hence
with increasing ratio between the durations of the 2D and
the 3D collapses. Indeed, since the 2D collapse proceeds
quasistatically, its reproducibility is limited only by the
experimental fluctuations of the gas and the liquid flow
rates. On the other hand, the intrinsic unstable nature of the
3D collapse, hence its sensitivity to random fluctuations,
limits its reproducibility. More precisely, comparing differ-
ent pinch-off events in the square and the rectangular (30 X
20 um?) channels, we indeed saw a higher standard de-
viation in pinch-off time (2.8 versus 2.0 us) and pinch-off
location (1.5 versus 0.9 wm) in the square channel.

The values of PDI can be compared to the bubbling
frequency. We measured values of 0.18 (case a), 6.9 (case
b), and 10.7 kHz (case c). As expected, these frequencies
are lower than the inverse time of the process studied in
Fig. 3, because the gas tip retracts to the upstream direction
after breakup [Fig. 1(c)], and the channel has to be refilled
by the gas before the next collapse starts again [5]. This is
the bubbling regime, in contrast to the jetting regime where
the gas jet would not retract; such a regime has been
predicted to happen only for liquid velocities higher than
approximately v/n = 30 m/s [16], much higher than ours
(3 m/s or lower). In the bubbling regime, the durations of
the 2D and 3D collapses define the upper bound for the
bubbling frequency, and at a given channel height, the
stable 2D collapse is shortened and eventually suppressed
when the aspect ratio W/H decreases to 1 (square
channel).

In conclusion, the resolved study of the bubble detach-
ment revealed that the ultimate stage of the pinch-off is
controlled only by liquid and gas inertia, which fluctua-
tions cause the jitter in the 3D collapse time. On the other
hand, in the 2D collapse, fluctuations are smoothened out
by viscosity. Therefore the user has a choice between high
monodispersity by using elongated rectangular channels,
and high bubbling frequency by using square channels.
This study therefore brings new insight in the design of
microsystems dedicated to the production of microbubbles
of very precise properties, including more complex chan-
nel geometries [17].
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