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We study the drying of isolated channels initially filled with water moulded in
a water-permeable polymer (polydimethylsiloxane, PDMS) by pervaporation,
when placed in a dry atmosphere. Channel drying is monitored by tracking a
meniscus, separating water from air, advancing within the channels. The role
of two geometrical parameters, the channel width and the PDMS thickness, is
investigated experimentally. All data show that drying displays a truncated
exponential dynamics. A fully predictive analytical model, in excellent agree-
ment with the data, is proposed to explain such a dynamics, by solving water
diffusion both in the PDMS layer and in the gas inside the channel. This drying
process is crucial in geological or biological systems, such as rock disinte-
gration or the drying of plant leaves after cavitation and embolism formation.

1. Introduction
The process of drying is the removal of liquids by evaporation from a solid.
It is important in both natural and man-made systems. Chemical separation,
which includes drying and distillation, accounts for 10–15% of the world’s
total energy consumption [1]. Drying is also involved in numerous geological
and biological processes, e.g. in rock disintegration [2] or salt weathering [3]
by subflorescence growth of salt crystals in drying rocks, or in the drying of
soils, an economically important agricultural process [4]. In living organisms,
drying is involved in, for example, the regulation of body temperature [5]
and nutrient transport in biofilms [6]. Moreover, it is highly important in
plants, which can be strongly affected by drought-induced embolism formation,
a growing threat in the context of global warming [7].

A common feature of the aforementioned examples is that drying occurs by
evaporation from a porous material into the atmosphere, a process known as per-
vaporation. The microstructure of these materials can be highly complex, and the
drying rates are strongly dependent on the specific geometry. However, the
underlying structure is often a network of either approximately circular pores
or long and linear channels. The drying of porous materials with circular pores
is relatively well understood [8]; however, the physical effects and parameters
that determine the rate of drying from porous media composed of linear channels
are still poorly understood.

For instance, in plant leaves, water flows in tiny parallel conduits located in
the xylem tissue of the leaf veins. In normal physiological conditions, incoming
water diffuses out of the veins and evaporates at the leaf surface. The cata-
strophic drying of the channels starts after cavitation events, that is the
nucleation of bubbles in water. Cavitation occurs during drought when evapor-
ation results in relatively strong negative pressures. Even if numerous studies
have investigated the physical process at the origin of cavitation [9–14], the
physical dynamics of its spreading remains elusive.

Here, we propose to explore a simple physical model of linear channels in
porous material. We are inspired by a set-up proposed by [9,15–17] to mimic
water networks in a leaf, using microfluidic devices made in a porous elastomer.
Long linear channels can be found in grass plants for instance (figure 1). In other
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contexts, this very configuration was also designed in micro-
fluidic devices where pervaporation was used in a chemical
engineering context to homogeneously concentrate liquid
solutions [19–24]. We therefore hope the present study to be
useful for microfluidic applications involving evaporation.

The process of drying of these channels involves a gas/
liquid meniscus that is moving as the liquid is diffusing
out of the system (similar to [25] or [26]). The main goal of
the paper is to measure and predict the evaporative rate
of the liquid through polydimethylsiloxane (PDMS) from
linear channels having a rectangular cross section, and thus
predict the motion of the meniscus.

2. Material and methods
We first describe the fabrication of the microfluidic channels on
the top of a glass plate and the drying method.

2.1. Materials
We made channels of width w ¼ 75, 100, 125, 150 and 175 mm
side by side, separated by a distance of 2.5 mm (figure 2a).
This distance is small enough that the five channels can be sim-
ultaneously imaged, but large enough that diffusive interactions

between channels be negligible [15]. The channels were moulded
in PDMS using standard soft lithography techniques. Briefly, we
first created a mould in a photoresistive material (SU8) on a sili-
con wafer. We mixed liquid PDMS (Sylgard 184, Dow Corning)
with a curing agent in mass proportions 9:1. This mixture
was degassed then spin coated on the mould, to create an
imprint of controlled thickness, and baked at 658C for one hour
to reticulate the PDMS. This imprint was then bonded to a
glass slide. We measured the channel thickness h using an inter-
ferometer, and the PDMS thickness H by microscope imaging.
The channel thickness was kept at h ¼ 35+ 1 mm, and exper-
iments were performed for four values of PDMS thickness:
H ¼ 75, 102, 140 and 249 mm (table 1), within 1 day after channel
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Figure 1. (a) Example of linear water conduits in a porous material: a grass leaf. This photograph is turned horizontally, showing parallel veins conducting water
from the base of the leaf (here on the left) to the tip. Photograph from the authors, taken in T. Brodribb’s laboratory. (b) Slice image (from [18]) of computed
tomography-scan of wet asphalt sample: water is in all the stone interstices. (c) Cross-sectional diagram of water transport in a leaf, here upside-down. The water
diffuses from the xylem conduits to the lower epidermis, where the stomata chambers are spread. (d ) Sketch of a wet rock. Water can evaporate from the water-
filled cracks. (Online version in colour.)
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Figure 2. (a) Sketch of the experiment inspired by Noblin et al. [15]. PDMS channels filled with water (in blue) are opened along the dashed line and submitted to
a flow of dry air, subsequently resulting in the evaporation of water from the channels. (b) Sketch of a channel longitudinal cross section. The part of the channel
filled with water is represented in dark blue, and the one filled with gas in light blue. The green arrows represent the water flux through PDMS, while the red one
shows the water flux at the water/air interface. (c) Sketch of the transverse cross section of the channels. Water in the channels is represented in blue. In (b,c), the
glass slide is represented in dark grey and the PDMS in light grey. (Online version in colour.)

Table 1. Set of thicknesses h of the channels and H of the PDMS used in
this study, and corresponding symbols in figures 4 – 7.

symbol h (mm) H (mm)

+ 35 75

* 37 102

! 37 140

. 37 249
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fabrication. Note that this configuration of a porous material on
top of impermeable glass closely mimics a leaf whose upper side
is covered with impermeable cuticle (figure 1).

2.2. Methods
We opened the channels by manually cutting through the PDMS
layer with a scalpel at the junction between the channels and the
round part (figure 2a). The opening simulates the rupture of the
water column by a cavitation bubble in a leaf. To fill the channels
with water, we immersed them in deionized water inside a
beaker, placed in a vacuum pump for one hour. Once they
were water filled, we placed them under dry atmosphere, as fol-
lows. We covered them with a Petri dish coverslip pierced by a
hole in which a tube is glued, and we flowed through this tube
compressed dry air from a bottle (Air Liquide) at a constant
flux of 50 ml min21. This constant circulation along the channel
surface ensured that dry conditions were met at the outer surface
of PDMS. Each channel progressively dried out, as a meniscus
separating water from gas advanced downstream through the
channel (figure 3), until reaching the closed end.

The channels were placed under a stereo-microscope objective
(Zeiss DV8), and the meniscus motion was imaged with a CCD
camera (Allied Visions Technologies, model Pike F-421B, 2000 !
2000 pixels), and recorded by performing a reslice operation
along the mid-curve of each channel using ImageJ freeware. We
deduced from this process a measurement of L(t), L being the

channel length filled with water and t the time, counted from
the beginning of the movie.

3. Results
Our experiments characterized the drying of a long channel
embedded in a permeable medium. Typical results of these
experiments are shown in figure 3b. In all our experiments,
the length of remaining water L(t) decreases with time t, con-
sistently with the drying process. Interestingly, the drying
velocity j _L(t)j decreases with time as well. Liquid water
completely disappears in the channel after a finite time tc.

To compare different channels more easily, we plot the
data as L(t 2 tc) in figure 4, such that all curves pass through
the origin corresponding to full drying. Figure 4a shows
results for a given PDMS thickness, but for different channel
widths. Here, we can clearly see the influence of the channel
width on the drying process: at given PDMS thickness H, the
lower the channel width w, the faster the drying process.

Figure 4b shows results for a given channel width, but for
different PDMS thicknesses. Such a representation clearly
shows the influence of the PDMS thickness on the drying pro-
cess: at given channel width, the lower the PDMS thickness,
the faster the drying process.
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Figure 3. Drying dynamics. (a) Micrograph showing the channels, of width w ¼ 75, 100, 125, 150 and 175 mm from top to bottom. The bright water-filled part of
the channels, of length L(t), is separated from the darker air-filled part by a meniscus which moves from right to left as the channels dry. (b) Measurement of L(t)
for h ¼ 37 mm and H ¼ 140 mm (circle: w ¼ 75 mm, square: w ¼ 100 mm, diamond: w ¼ 125 mm, triangle: w ¼ 150 mm, inverted triangle: w ¼
175 mm). (Online version in colour.)
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Figure 4. Plot of L(t 2 tc). (a) The PDMS thickness is fixed (here, H ¼ 102 mm) and different colours and symbols represent different channel widths: w ¼
75 mm (circle, red), 100 mm (square, green), 125 mm (diamond, blue), 150 mm (triangle, black) and 175 mm (inverted triangle, magenta). (b) The channel
width is fixed (here, w ¼ 125 mm) and different symbols represent different PDMS thickness H (see table 1 for their definitions). Curves are fitted by equation
(4.8), with Lg, L0 and t as fitting parameters. (Online version in colour.)
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4. Theory
In this section, we propose a model to predict the drying
dynamics observed in our experiments. The main predictions
are summarized at the beginning of §4.4, and they are compared
to the experimental data in §5.

4.1. General considerations
We use the following assumptions. (i) As stated in §2, we con-
sider each channel as isolated. (ii) We neglect the entrance effect
at the open end of the channel. (iii) We neglect the curvature of
the meniscus. (iv) We neglect all pressure variations. (v) We
neglect PDMS deformation, and thus assume that the channel
is of constant cross section.

We adopt the following coordinates (figure 2b,c): we fix the
origin at the contact line between the meniscus and the glass
slide, midway between the two vertical channel walls. Hence,
the origin moves at velocity _L(t) in the laboratory frame.
The axis y goes spanwise along the glass slide, the axis x is per-
pendicular to the meniscus away from the water phase, and
the axis z goes upwards away from the glass slide. Hence,
the channel cross section is such that 2 w/2 " y " w/2 and
0 " z " h, the water phase is at 2 L(t) " x " 0, and the gas
phase at the other side of the meniscus is at x . 0. As we
neglect any entrance effect, we do not consider any upper
bound on x in the gas phase.

As the volume of water in the channel equals hwL(t), the
drying dynamics obeys the conservation equation

r

M
hw _L = #Q, (4:1)

where r ¼ 103 kg m23 is the density of liquid water, M ¼
1.8 ! 1022 kg mol21 its molar mass and Q the molar flux of
water leaving the water-filled part of the channel. Water dif-
fuses through PDMS with a diffusion coefficient DP of order
1029 m2 s21 [15,27,28], whence a diffusive flux given by Fick’s
Law: JP = #DPrcP, where cP denotes the water molar con-
centration field in PDMS. Water vapour diffuses in air with
a diffusion coefficient Da ¼ 2.8 ! 1025 m2 s21, and the corre-
sponding Fick’s Law is written: Ja = #Darca, where ca

denotes the water vapour molar concentration field in air.
The flux Q can be split in two contributions: one from the
water/PDMS interface S‘, and one from the meniscus

Q = Q‘ + Qg,

where

Q‘ =
ð

S‘
JP $ n dS, (4:2)

with n the outwards normal vector along S‘, and

Qg =
ðw=2

#w=2
dy
ðh

0
dz Ja,zjx=0: (4:3)

As the typical length of the water-filled part (1 cm) is
much larger than the typical sizes of the cross section of the
channel and of the PDMS (w, h and H are of order 102 mm),
except at the very end of the drying process, we may in the
first approximation assume that in the water-filled part, the
problem is invariant by translation along x; this amounts to
neglecting edge effects at the closed end of the channel.
Therefore, the concentration field cP is independent of x
for 2 L " x " 0, and

Q‘ = q‘L,

with

q‘ =
ðh

0
(JP,yjy=w=2 # JP,yjy=#w=2) dz +

ðw=2

#w=2
JP,zjz=h dy: (4:4)

Hence, Q ¼ q‘L þ Qg. Inserting in (4.1) yields

_L = #
L + Lg

t
, (4:5)

with

t =
rhw
Mq‘

(4:6)

and

Lg =
Qg

q‘
: (4:7)

The drying dynamics is thus predicted to follow a truncated
exponential law of the form

L(t) = (L0 + Lg) e#t=t # Lg, (4:8)

where L0 ¼ L(t ¼ 0) is the initial wet length. Such a law is
indeed an excellent fit of the experiments, almost indistin-
guishable from the data (figure 4). The fitting parameters Lg

and t are plotted as functions of w for the different thick-
nesses in figure 5a,b. These plots show the following trends.
At fixed H, both t and Lg increase with increasing w,
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Figure 5. Plot of (a) t and (b) Lg as functions of w. See table 1 for the definition of symbols.
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consistent with figure 4. This increase is relatively stronger for
t than for Lg. Next, at fixed w and h, both t and Lg increase
with increasing w. Here again, this increase is relatively
stronger for t than for Lg.

The next modelling step consists in predicting q‘ (§4.2)
and Qg (§4.3).

4.2. Liquid phase transport q‘
To predict q‘, we have to determine the concentration field of
water in PDMS, which obeys the diffusion equation. Note
first that as w, h and H are of order a ¼ 1024 m, the diffusion
time scale a2/DP is of order 10 s, which is much shorter than
the experimental time scale of drying, of order 104 s from
figure 4. Therefore, we may solve a two-dimensional steady
diffusion problem, i.e. the two-dimensional Laplace equation

@2cP

@y2 +
@2cP

@z2 = 0: (4:9)

As a property of Laplace equation, flux is conserved and we
may compute q‘ all along the air/PDMS interface, replacing
(4.4) by

q‘ = # 2DP

ð1

0

@cP

@z

""""
z=H

dy, (4:10)

where Fick’s Law was used, as well as the symmetry of the
problem with respect to the axis y ¼ 0.

The boundary conditions are as follows. First, cP = csat
P at

the channel/PDMS interface Cchannel, which is constituted
by the two segments 0 " y " w/2 for z ¼ h, and 0 " z " h
for y ¼ w/2. The quantity csat

P is the equilibrium concentration
of water in PDMS in contact with water. Second, @cP/@y ¼ 0
at the symmetry axis Csym, located at h " z " H for y ¼ 0.
Third, @cP/@z ¼ 0 at the glass/PDMS interface Cglass, located
at y & w/2 for z ¼ 0, because glass is impermeable to water.
We refer to figure 2c for a sketch of Cchannel, Csym and Cglass.

Another boundary condition relates the concentration
across the PDMS/outer air interface Cout (figure 2c). To
write it, we use the study by Harley et al. [29], who studied
the uptake of water by PDMS in contact with air at various
humidities. Their results show small non-ideal behaviours
at small and large humidities, but overall the water concen-
tration in PDMS and the humidity are almost proportional.
We will thus simply apply Henry’s Law on Cout

cout
a = acP, (4:11)

with cout
a the concentration of water vapour in the ambient

atmosphere (in our experiments, we assume that due to the con-
stant circulation of dry air around the channels, cout

a = 0), and a

a dimensionless Henry constant. Harley et al. [29] measured a
concentration of 0.9 cm3 of water vapour per gram of PDMS
in equilibrium with saturated air at 308C. With a PDMS density
rPDMS ¼ 965 kg m23, this corresponds to a concentration of
water in PDMS equal to 36 mol m23. This value is close to the
value of csat

P = 40 mol m23 reported by Randall & Doyle [28].
Moreover, the molar concentration of water in saturated air
equals csat

a = psat=RT, with psat the water vapour pressure in
saturated air, R the ideal gas constant and T the temperature.
With psat ¼ 3 kPa, we estimate csat

a = 1 mol m23. Hence, we
simply estimate a as a = csat

a =csat
P = 0:03.

Finally, as coupling between channels is neglected, cP

equilibrates with the outer atmosphere far from the channel:
limy!1 acP = cout

a , from Henry’s Law (4.11).

We solve this problem analytically using conformal map-
ping techniques. The full derivation is given in appendix
A. It is exact, and the numerical resolution of (A 6) and (A 13)
provides the exact value of the flux for arbitrary values of h, w
and H. In particular, we derive an explicit simplified prediction
of the flux as a function of the geometrical parameters. The
dimensionless evaporative flux ~q‘ is defined as

q‘ = DP csat
P #

cout
a
a

# $
~q‘=DPcsat

P (1# RH)~q‘, (4:12)

where RH = cout
a =csat

a is the relative humidity of the ambient air,
and we predict

~q‘ ≃
w
d

+
2
p

ln
(H + d)h

d2 +
H
d

ln
H + d

h

% &
: (4:13)

This approximated expression is seen to fit the exact numerical
values of the flux within less than 1% (figure 6). The range of val-
idity of (4.13) is further discussed in appendix A (figure 11).
This excellent agreement fully justifies the interest of the analyti-
cal approach, which yields the explicit dependence of the flux on
all geometrical parameters.

4.3. Gas phase transport Qg
The second contribution to drying, Qg, arises from the
exchanges in the region x . 0 above the channel filled with
gas. Physically, the gas close to the meniscus is still saturated
with water vapour, then it dries out through pervaporation of
water from the channel inside to the outer dry atmosphere
through PDMS. Hence, the problem is much more difficult
than in §4.2, for the following reasons. (i) It becomes depen-
dent on x and therefore fully three dimensional. (ii) It couples
diffusion in two media: in the PDMS, and in the gas within
the channel. As the latter phase is a fluid, convection effects
must, in principle, be accounted for. However, the meniscus
velocity does not exceed 20 mm s21 (figure 4). Hence, with
channel dimensions of order 1024 m, the Péclet number
Pe = _Lh=Da comparing convection and diffusion remains of
order 1024, hence convection remains negligible. (iii) In prin-
ciple, as _L(t) varies with time, the problem is time dependent.
Nevertheless, we will consider that the problem is steady in
the frame of the moving meniscus.
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Figure 6. Plot of the dimensionless flux ~q‘ as a function of w, for different
values of H (see table 1 for the definition of symbols). Symbols come from
the numerical resolution of equations (A 6) and (A 13) of the exact model.
The lines come from the simplified prediction (4.13) for the flux, which turns
out to be an excellent approximation.
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In the frame of these approximations, we have to solve for
y . 0 two steady three-dimensional diffusion problems, one
for the concentration field cP in the PDMS, and one for the
concentration field ca in the channel. These two fields obey
the three-dimensional Laplace equation

@2ci

@x2 +
@2ci

@y2 +
@2ci

@z2 = 0, (4:14)

for i ¼ a and P. The boundary conditions are as follows. Like
before, we have the condition on Cout: cP = cout

a =a, the no-flux
conditions at the glass surface: @cP/@z ¼ 0 at y & w/2, and
@ca/@z ¼ 0 at 0 " y " w/2, for z ¼ 0, and the symmetry con-
ditions: @cP/@y ¼ 0 at h " z " H and @ca/@y ¼ 0 at 0 " z " h,
for y ¼ 0. On Cchannel, we now have to apply the continuity of
fluxes: Darca $ n = DPrcP $ n, where n is the unit normal
vector on Cchannel, and Henry’s Law (4.11) on the form: ca ¼
acP. Finally, far away from the meniscus, the channel and
PDMS are equilibrated with the ambient atmosphere:
limx!1 ca = limx!1 acP = cout

a .
Despite its complexity, we solve this problem analytically,

using a perturbation scheme based on the fact that DP/Da'
1. The full derivation is given in appendix B. Its final outcome
is the prediction of the flux Qg

Qg = csat
P (1# RH)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aDaDPhw~q‘

q
: (4:15)

4.4. Prediction for the dynamics of drying
To summarize the theoretical analysis and facilitate the com-
parison with data, we recall that the drying equation is (4.5):
_L = # (L + Lg)=t, with, from (4.5), (4.6) and (4.12),

t =
rhw

DPMcsat
P (1# RH)~q‘

, (4:16)

and from (4.7), (4.12) and (4.15),

Lg =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aDahw
DP~q‘

s

, (4:17)

where we recall the definition of the various quantities: r ¼
103 kg m23 is the water density, M ¼ 0.018 kg mol21 its
molar mass, h the channel height, w its width, DP and Da

are the diffusion coefficients of water, respectively, in
PDMS and in air, csat

P and cout
a are, respectively, the saturation

concentration of water vapour in air and its concentration in
the air surrounding the PDMS chip, a ¼ 0.03 is the Henry
constant quantifying the balance of water concentration at
the air/PDMS interface; see (4.11). Finally, ~q‘ is the dimen-
sionless flux of water per unit channel length, of which
(4.13) is a convenient approximation.

It is worth noting that Lg is the characteristic distance from
the meniscus over which air dries in the channel; see (B 13).
We note also that the combination L2

g=t is predicted to be
independent from ~q‘ and thus from geometrical parameters

L2
g

t
= aDa

M
r

csat
P (1# RH): (4:18)

The next section will be dedicated to comparison of the
quantitative parameters t and Lg with experiments.

5. Comparison between experiments and theory
We now compare the predictions from the previous section
with the data from figure 5.

First, we plot L2
g=t as a function of w, in figure 7a. From

(4.18), all data should collapse onto a single horizontal line.
We observe that it is indeed the case within 20%.

Second, we plot t as a function of the geometrical par-
ameter hw=~q‘, in figure 7b. We use the values of ~q‘ for the
experimental values of the geometrical parameters (figure 6).
Equation (4.16) predicts that all data should collapse onto a
single linear curve. Figure 7b shows that each series of data
follows indeed such a linear trend, and that the slopes are simi-
lar, except the series for h ¼ 75 mm which shows a slightly
lower slope.

Third, we plot Lg as a function of the geometrical parameterffiffiffiffiffiffiffiffiffiffiffiffiffi
hw=~q‘

p
. Equation (4.17) predicts that all data should collapse

onto a single linear curve. Figure 7c shows that this is the
case in good approximation for all series.

The mean of the data is hL2
g=ti = 8:6! 10#10 m2 s21

(figure 7a). Now, DaM/r¼ 5.0 ! 10210 mol (m s)21. If we take
a ¼ 0.03 from the estimate made in §4.3, csat

P = 40 mol m23

from Randall & Doyle [28], and cout
a = 0, we then have the predic-

tion L2
g=t = aDaMcsat

P (1# RH)=r = 6! 10#10 m2 s21, in good
agreement with our experimental value of hL2

g=ti.
The linear fit t = cthw=~q‘ yields ct = 0:91 s mm22 as best-

fitting parameter (figure 7b). This value must be compared to
r=[2DPMcsat

P (1# RH)]; see prediction (4.16). If we use DP ¼
1029 m2 s21, we compute r=[2DPMcsat

P (1# RH)] = 0:7 s mm22,
once again in good agreement with experiments. The linear
fit Lg = cLg

ffiffiffiffiffiffiffiffiffiffiffiffiffi
hw=~q‘

p
yields cLg = 27 as best-fitting parameter

(figure 7c). This value must be compared to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aDa=2DP

p
; see

prediction (4.17). If we use a ¼ 0.03 and DP ¼ 1029 m2 s21,
we compute

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aDa=2DP

p
= 20, once again in good agreement

with experiments. We can conclude that our model captures
quantitatively the drying dynamics with good accuracy, with-
out adjustable parameters. The main source of uncertainty is
likely PDMS ageing, even though we took care to perform
experiments within 1 day after the preparation of our PDMS
samples. Indeed, the reticulation of PDMS with its curing
agent is a slowly ongoing reaction, which probably makes
quantities such as csat

P , a and DP drift over time.
Finally, our analysis enables us to explain why at given

thicknesses, the wider the channel, the slower the drying
process. Substituting (4.13) in (4.16) indeed yields

t =
rh

DPMcsat
P (1# RH)

1
d

+
4p
w

ln
(H + d)h

d2 +
H
d

ln
H + d

h

% &( )#1

,

(5:1)

which is an increasing function of the channel width w, with
a limit value limw!1 t = rh=[DPMcsat

P (1# RH)d]. Narrow
channels dry faster because of the side channel contribution
which is independent of the channel width, and which thus
becomes an increasingly efficient contribution to drying as
the width decreases. This is clearly visible in a ‘race’ exper-
iment such as the one of figure 3b. The physical explanation
is the following: evaporation from narrow channels has a con-
tribution from edges that is relatively more important
compared to large channels.

We now discuss the applicability of our model, starting by
evaluating the assumptions stated at the beginning of §4.1.
First, channels can be considered as independent if they are sep-
arated by a distance larger than a few times the PDMS
thickness H, which acts as a screening length for diffusion pro-
blems. If channels are closer or come as a bundle, their coupling
must be included [15]. Second, as Lg is the distance from the
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meniscus over which air within the channel dries, entrance effects,
namely the influence of the open end of the channel, may be neg-
lected as soon as the meniscus is at distances larger than Lg from
the open end, which is true in our experiments. Moreover, we
neglect pressure effects. In the present case, capillary pressures
are much larger than viscous pressure drops. As the meniscus
is curved, there is a Laplace pressure jump PL of order g/h
across it, with g¼ 0.07 N m21 the surface tension; hence in our
case, PL( 2 kPa. This remains two orders of magnitude smaller
than the ambient pressure, hence it does not significantly
modify the saturation conditions in air and in PDMS. However,
capillary underpressure in water may deform PDMS inwards
the channel. To assess such an effect, we simulated with Matlab
the elastic deformation of PDMS under the pressure difference
PL¼ 2 kPa in the most deformable case: the widest channel
(w¼ 175 mm) and the thinnest PDMS cap (d¼ 39 mm), with a
Young modulus E¼ 2 MPa and a bulk modulus K¼ 1.5! 108

Pa [30]. In this simulation, the maximal inward displacement, at
the centre of the top channel–PDMS interface, did not exceed 1
mm, which is much lower than h: deformation is thus negligible.
More generally, if w . d, the theory of plates may be used in the
first approximation to get the following order of magnitude of the
inward displacement: PL w4/Ed3, which must be compared to h to
evaluate deformation effects. Furthermore, the model still holds
for non-straight channels if the radius of curvature of their centre-
line is much larger than H, and for non-constant ambient
conditions cout

a if they vary over time scales much larger than
the typical diffusion time H2/DP. We can also justify the quasi-
steady diffusion assumption made in our model. It amounts to

evaluating the ratio of time scales tdiff/t, where tdiff ( a2/DP

with a the order of magnitude of h, w and H. From (5.1), we
then obtain: tdiff=t ( Mcsat

P =r, up to a purely geometrical
dimensionless prefactor of order one. Now, Mcsat

P =r = 10#3,
hence tdiff/t' 1, which fully justifies the quasi-steady nature
of water diffusion within PDMS, whatever the typical scale a.

Finally, and most crucially, our study is limited to isolated
channels. Physically, this is the elementary building block
towards understanding drying in the complex networks
encountered in, for example, rocks or leaves, which show
more complex dynamics owing to channel intercoupling
[14]. The implications of channel–channel interactions will
be the subject of an upcoming study.

6. Conclusion
Nature and technology’s myriad drying processes make clear
that the system drying kinetics depends on both its geometry
and its scale. We have identified the dominant effects in an
important special case: drying from a long channel embedded
in a permeable medium. To complement the experiments,
we have suggested a physical picture which highlights the
importance of two effects. First, narrow channels dry relatively
faster because transport through the side walls becomes
increasingly important. This accentuates the relevance of
including three-dimensional effects in analyses of drying.
Second, the drying speed tends towards a constant, finite
value at the end of drying, because of the evaporation from
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the mean of the data, hL2
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the meniscus. These processes have been modelled by detailed
analytical calculations. This allows us to rationalize experimen-
tal observations across a wide range of parameters, and our
study sheds insight into the key parameters relevant to opti-
mizing drying processes in engineering applications and to
understand drying in the complex networks of real leaves.
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Appendix A. Analytical derivation of the flux ~q‘
We start by stating the dimensionless version of the problem
to solve in §4.2. We define a dimensionless concentration
~cP = (cP # cout

a =a)=(csat
P # cout

a =a), equal to 0 at the outer
PDMS surface and to 1 at the channel/PDMS surface. We
rescale lengths by the half-width w/2 of the channel, and
thus define: ~x = 2x=w, ~y = 2y=w and ~z = 2z=w. We thus have
~cP = f , with f a solution of Laplace equation

@2f
@~y2 +

@2f
@~z2 = 0, (A 1)

with boundary conditions

f = 1 on Cchannel,
f = 0 on C out,

@f
@~z

= 0 on C glass

and
@f
@~y

= 0 on C sym:

9
>>>>>>>>=

>>>>>>>>;

(A 2)

Moreover, from (4.10) and (4.12), the flux to be computed
equals

~q‘ = # 2
ð1

0

@f
@~z

""""
~z= ~H

d~y: (A 3)

A.1. Two Schwarz – Christoffel transformations
The geometry of the channel cross section (figure 2c) is
amenable to a standard technique of complex analysis:
conformal mapping, and more precisely to Schwarz–
Christoffel transformation, which maps the half-PDMS cross
section (using the symmetry with respect to the y ¼ 0 axis)
onto the upper half-complex plane. This transformation
takes the from [31]

z = C
ðY4

i=1
(z# zi)

ai#1 dz + D, (A 4)

where z = ~y + i~z is the complex variable describing the
PDMS cross section (in this appendix A, z is not the vertical
direction as in figure 2b,c), and z ¼ j þ ih is the one

describing the upper half-complex plane onto which the
PDMS cross section is mapped. In equation (A 4), the product
corresponds to the four corners A1, A2, A3 and A4 of the orig-
inal domain (figure 8), located, respectively, at z1 = i ~H, z2 = i~h,
z3 = 1 + i~h and z4 ¼ 1. The quantity ai is related to the angles
at these four corners: a1 ¼ a2 ¼ a4 ¼ 1/2, and a3 ¼ 3/2
(figure 8).

In equation (A 4), we have the freedom to ascribe the
mapping of two points [31]. A possible choice consists
in mapping A1 to z ¼ 0, and A4 to z ¼ 1. Equation (A 4)
then becomes

z = C
ðz

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z0 # x3

z0(z0 # x2)(z0 # 1)

s

dz 0 + i ~H: (A 5)

With this choice, A2 is mapped onto z ¼ x2 and A3 onto z ¼
x3, with 0 , x2 , x3 , 1. The two numbers x2 and x3, and
the constant C, are then the solutions of the system of
nonlinear equations

~H # ~h = C
ðx2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x3 # x

x(x2 # x)(1# x)

r
dx,

1 = C
ðx3

x2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x3 # x

x(x# x2)(1# x)

r
dx

and ~h = C
ð1

x3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x# x3

x(x# x2)(1# x)

r
dx,

where the integrals can be expressed as functions of complete
elliptic integrals. Combining these three equations and using
formulae 3.167.19, 3.167.21 and 3.167.22 from Gradshteyn &

1
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Figure 8. Schwarz – Christoffel transformations used to determine analytically
the concentration field in the PDMS cross section. (Online version in colour.)
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Ryzhik [32], we obtain

~H # ~h = x3#x2
1#x3

P(x2=x3, r)
P((x3#x2)=(1#x2), q)#K(q)

and ~h = x3#x2
1#x3

P((1#x3)=(1#x2), r)#K(r)
P((x3#x2)=(1#x2), q)#K(q) ,

9
=

; (A 6)

where r ¼ (1 2 x3)x2/[(1 2 x2)x3] and q ¼ (x3 2 x2)/[(1 2

x2)x3], and where K and P are the complete elliptic integrals
of the first and third kind, respectively, defined as

K(k) =
ðp=2

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1# k sin2 t
p

and P(n, k) =
ðp=2

0

dt

(1# n sin2 t)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1# k sin2 t
p :

We can now use this transformation to solve Laplace
equation (A 1) subject to boundary conditions (A 2). As
Laplace equation is invariant under conformal mapping
[31], the problem to solve in the upper half z-plane is, with
z ¼ j þ ih: @2f/@j2 þ @2f/@h2 ¼ 0, with boundary conditions
on h ¼ 0: f ¼ 0 for j " 0, @f/@h ¼ 0 for 0 , j , x2 and for j .

1, and f ¼ 1 for x2 " j " x3.
Owing to the alternate nature of the boundary conditions,

alternatively of the Dirichlet (imposed concentration) or Neu-
mann (imposed flux) kind, there exists no direct solution of
such a problem. To proceed, we use another Schwarz–Chris-
toffel transformation, which maps the rectangle ABCD onto
the z-plane, where A is located at w ¼ 0, B at w ¼ 1, and D
at w ¼ id, onto the upper half-complex plane, such that A is
mapped to z ¼ 0, B to z ¼ x2, C to z ¼ 1, and D to z ¼+1
(figure 8). Such a transformation is written

w = Cw

ðz

0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z0(z0 # x2)(z0 # 1)

p , (A 7)

provided

1 = w(B)# w(A) = Cw

ðx2

0

djffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j(x2 # j)(1# j)

p = 2CwK(x2),

and

d = w(D)# w(A) = Cw

ð0

#1

djffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#j(x2 # j)(1# j)

p = 2CwK(1# x2):

These conditions impose

Cw =
1

2K(x2)
(A 8)

and d¼ K(1 2 x2)/K(x2). Now, the problem to solve in the
w-rectangle is, writing w ¼ xw þ iyw: @2f=@x2

w + @2f=@y2
w = 0,

with boundary conditions: f ¼ 0 on DA, @f/@yw ¼ 0 on AB
and CD, and f ¼ 1 on BC. The solution is trivially f ¼ xw. In
particular, the concentration gradient is unity along xw

@f
@xw

= 1 and
@f
@yw

= 0: (A 9)

A.2. Expression of the flux
We now use the two transformations (A 5) and (A 7) to
express the flux ~q‘ in closed form. The transformation (A 5)
can be considered as a change of variables from (~y, ~z) to
( j, h). Using the chain rule, we obtain

@f
@~z

(~y, ~z) =
@j

@~z
(~y, ~z)

@f
@j

(j, h) +
@h

@~z
(~y, ~z)

@f
@h

(j, h):

In particular, if we specify this formula on the air/PDMS
interface, ~z = ~H and ~y & 0, this corresponds to the semi-
axis h ¼ 0, j " 0. Now from the Schwarz–Christoffel
formula (A 5), z0(z) = C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(z# x3)=[z(z# x2)(z# 1)]

p
, hence on

the semi-axis h ¼ 0, j " 0: @~y=@j = 0 and @~y=@h=
C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x3 # j)=[#j(x2 # j)(1# j)]

p
. Therefore,

@f
@~z

(~y, ~z = ~H) =
1
C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
# j(x2 # j)(1# j)

x3 # j

s
@f
@h

(j, h = 0): (A 10)

Similarly,

@f
@h

(h, j) =
@xw

@h
(h, j)

@f
@xw

(xw, yw) +
@yw

@h
(h, j)

@f
@yw

(xw, yw),

hence from (A 9),

@f
@h

(h, j) =
@xw

@h
(h, j): (A 11)

In particular, if we specify this formula on the semi-axis h ¼
0, j " 0, this corresponds to the interval DA in the
w-plane. Now from the Schwarz–Christoffel formula (A 7)
and the condition (A 8), w0(z) = 1=[2K(x2)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z(z# x2)(z# 1)

p
],

hence specifying this formula on DA, (A 11) becomes

@f
@h

(h = 0, j) = # 1
2K(x2)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#j(x2 # j)(1# j)

p :

Inserting this expression in (A 10) yields

@f
@~z

(~y, ~z = ~H) = # 1
2CK(x2)

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x3 # j
p : (A 12)

We are now in a position to provide an analytical
expression of the flux ~q‘. From (A 3) and (A 12), we obtain

~q‘ =
1

CK(x2)

ð1

0

d~yffiffiffiffiffiffiffiffiffiffiffiffiffi
x3 # j
p :

We perform the variable change ~y to j. From the trans-
formation (A 5) specified on the semi-axis h ¼ 0, j " 0,
@~y=@j = C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x3 # j)=[#j(x2 # j)(1# j)]

p
, hence

~q‘ =
1

K(x2)

ð0

#1

djffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#j(x2 # j)(1# j)

p ,

which yields the expression of the flux as a function of the
sole parameter x2:

~q‘ =
2K(1# x2)

K(x2)
, (A 13)

which constitutes the main result of our analysis. The corre-
sponding flux is plotted as a function of x2 in figure 9. It is
a decreasing function of x2, diverging at x2! 0 and such
that ~q‘(x2 = 1) = 0.

Our analysis provides a prediction of the flux ~q‘ for any
value of the geometrical parameters h, w and H; it suffices
to solve the system (A 6) for x2 and use (A 13). We plot the
values of ~q‘ as a contour plot in the parameter space (~d, ~h)
in figure 10.

It turns out that for our experimental range of the geo-
metrical parameters, solving (A 6) yields values of x2 much
smaller than 1. It is therefore of practical interest to expand
(A 6) for x2' 1. Using the asymptotic expansions of the
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complete elliptic integrals

P(n, k)# K(k) = # n
2(1# n)

ln (1# k)# 4 ln 2 +
1ffiffiffi
n
p ln

1 +
ffiffiffi
n
p

1#
ffiffiffi
n
p

% &

+ O((1# k) ln (1# k))

and P(n, k) =
p

2
1ffiffiffiffiffiffiffiffiffiffiffi

1# n
p # 1
# $

+ O(n, k), K(k) =
p

2
+ O(k),

(A 6) becomes

~H # ~h = # p ln x2 # 4 ln 2 + ln #1 +
1
x3

# $
+

1
ffiffiffiffiffi
x3
p ln

1 +
ffiffiffiffiffi
x3
p

1# ffiffiffiffiffi
x3
p

% &#1

+ O(x2 ln x2)

and ~h = # p
1# ffiffiffiffiffi

x3
p
ffiffiffiffiffi
x3
p ln x2 # 4 ln 2 + ln # 1 +

1
x3

# $%

+
1
ffiffiffiffiffi
x3
p ln

1 +
ffiffiffiffiffi
x3
p

1# ffiffiffiffiffi
x3
p

&#1

+O(x2 ln x2),

whence
ffiffiffiffiffi
x3
p

= 1# ~h= ~H + O(x2 ln x2) and

ln x2 # 4 ln 2 = # p
~H # ~h

# ln
(2 ~H # ~h)~h
( ~H # ~h)2

#
~H # ~h

~H
ln

2 ~H # ~h
~h

+ O(x2 ln x2): (A 14)

This shows, in particular, that the approximation x2' 1
remains valid as long as ~H # ~h does not get too large.

Next, using the asymptotic expansions of the complete
elliptic integral of first kind: K(k) = p=2 + O(k) and K(1# k)=
# 1

2 ln (1# k) + 2 ln 2 + O((1# k) ln (1# k)), we obtain the
expansion of (A 13): ~q‘ = # 2( ln x2 # 4 ln 2)=p + O(x2 ln x2).
Using (A 14) and coming back to dimensional quantities,
we obtain the explicit prediction (4.13) for the flux.

Finally, we compute the relative error done when repla-
cing the exact value of the flux by the approximation (4.13).
This relative error is shown as a contour plot in the par-
ameter space (~d, ~h) in figure 11. This figure confirms the
excellent accuracy of the approximation (4.13), as long as ~h
does not become much smaller than 1 and ~d much larger
than 1.

Appendix B. Analytical derivation of the flux Qg
Like in appendix A, we start by stating the dimensionless ver-
sion of the problem to solve in §4.3. We use the dimensionless
variables defined in appendix A, plus the dimensionless con-
centration field in the channel: ~ca = (ca # cout

a )=(csat
a # cout

a ). We
then have to solve, at ~x . 0,

@2~ci

@~x2 +
@2~ci

@~y2 +
@2~ci

@~z2 = 0, (B 1)

for i ¼ a, P, with boundary conditions

~cP = 0 on Cout, (B 2a)
@~cP

@~z
= 0 on C glass, (B 2b)

@~ca

@~z
= 0 at 0 " ~y " 1 and ~z = 0, (B 2c)

@~cP

@~y
= 0 on C sym, (B 2d)

@~ca

@~y
= 0 at ~y = 0 and 0 " ~z " ~h, (B 2e)

~ca = ~cP and r~ca $ n = er~cP $ n on C channel, (B 2f)

~ca = 1 at ~x = 0, 0 " ~y " 1 and 0 " ~z " ~h (B 2g)
and lim

~x!1
~ca = lim

~x!1
~cP = 0, (B 2h)
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where

e =
DP

Da

csat
P # cout

a =a

csat
a # cout

a
=

DP

aDa
, (B 3)

since a is estimated as a = csat
a =csat

P ; see §4.2.
As Da ¼ 3 ! 1025 m2 s21 and DP ( 1029 m2 s21 [27], using

a ¼ 0.03, we compute 1 ¼ 1023. Hence, 1' 1, and we can
solve the problem using perturbation methods. However, at
leading order 1 ¼ 0, equation (B 2f ) shows that PDMS
becomes impermeable to water. This is incompatible with
the boundary conditions at ~x = 0 and at ~x! 1, which express
the progressive drying of the air within the channel as the
distance to the meniscus increases. This suggests that ~x
must be rescaled is order to account for the channel/PDMS
exchanges. Therefore, we pose the following expansions:

~ci " c(0)
i (x̂, ~y, ~z) + ec(1)

i (x̂, ~y, ~z) + $ $ $ ,

for i ¼ a, P, where x̂ = eb~x with b is a positive exponent to be
determined. Substituting this expansion in Laplace equation
(B 1) yields

@2c(0)
i

@~y2 +
@2c(0)

i

@~z2 + e
@2c(1)

i

@~y2 +
@2c(1)

i

@~z2

 !
+ $ $ $ + e2b @

2c(0)
i

@x̂2 + $ $ $

= 0: (B 4)

Hence, at leading order, this equation and the boundary
conditions (B 2) become

@2c(0)
i

@~y2 +
@2c(0)

i

@~z2 = 0, (B 5a)

c(0)
P = 0 on Cout, (B 5b)

@c(0)
P
@~z

= 0 on C glass, (B 5c)

@c(0)
a
@~z

= 0 at 0 " ~y " 1 and ~z = 0, (B 5d)

@c(0)
P
@~y

= 0 on C sym, (B 5e)

@c(0)
a
@~y

= 0 at ~y = 0 and 0 " ~z " ~h, (B 5f)

c(0)
a = c(0)

P and rc(0)
a $ n = 0 on C channel, (B 5g)

c(0)
a = 1 at ~x = 0, 0 " ~y " 1 and 0 " ~z " ~h (B 5h)

and lim
~x!1

c(0)
a = lim

~x!1
c(0)

P = 0: (B 5i)

The concentration field c(0)
a is subject to no-flux boundary

conditions (B 5d ), (B 5f ) and (B 5g) all around the channel
spanwise cross section. Hence, by property of Laplace
equation, it does not depend on ~y and ~z: c(0)

a (~y, x̂, ~z) = c0(x̂)
with c0 a yet unknown function, which will be determined
at order one. Then, if we define a new dimensionless concen-
tration ĉP = cP=c0, ĉP obeys exactly the boundary conditions
(A 2), hence we have simply: ĉP = f , and

c(0)
P (x̂, ~y, ~z) = c0(x̂)f(~y, ~z): (B 6)

In particular, the evaporative flux per unit length along x is:
# 2

Ð1
0 @c(0)

P =@~zj~z= ~H d~y = c0~q‘.
At the next order, the role of the streamwise direction x

must appear. Hence from (B 4), we must set b ¼ 1/2, and
we have

@2c(1)
a

@~y2 +
@2c(1)

a

@~z2 +
d2c0

dx̂2 = 0, (B 7)

with boundary conditions

@c(1)
a
@~z

= 0 at 0 " ~y " 1 and ~z = 0, (B 8a)

@c(1)
a
@~y

= 0 at ~y = 0 and 0 " ~z " ~h, (B 8b)

@c(1)
a
@~z

= c0
@f
@~z

at 0 " ~y " 1 and ~z = ~h, (B 8c)

@c(1)
a
@~y

= c0
@f
@~y

at ~y = 1 and 0 " ~z " ~h, (B 8d)

c(1)
a = 1 at x̂ = 0, 0 " ~y " 1 and 0 " ~z " ~h (B 8e)

and lim
x̂!1

c(1)
a = 0: (B 8f)

Hence, c(1)
a obeys Poisson equation with Neumann boundary

conditions. The solution of such a problem is not unique, because
it is known up to an arbitrary offset, but we shall see that it is of
no importance when determining c0. Solving such an equation
analytically is standard [31]. We pose the Fourier series

@2c(1)
a

@~y2 =
1
2

a0(~z) +
X1

n=1
an(~z) cos np~y,

and

c(1)
a =

1
2

A0(~z) +
X1

n=1
An(~z) cos np~y,

where

an = 2
ð1

0

@2c(1)
a

@~y2 cos np~y d~y, An = 2
ð1

0
c(1)

a cos np~y d~y:

Integrating by parts the expression of an and accounting for (B 8b)
and (B 8d), we obtain

an = 2(#1)nc0
@f
@~y

(~y = 1, ~z)# p2n2An:

Inserting these relations in Poisson equation (B 7) yields

#d2c0

dx̂2 = c0
@f
@~y

(~y = 1, ~z) +
1
2

d2A0

d~z2

+
X1

n=1
2(#1)nc0

@f
@~y

(~y = 1, ~z) +
d2An

d~z2 #p2n2An

" #

cosnp~y:

From the orthogonality of the set of cos np~y in the interval
0 " ~y " 1, we obtain

d2A0

d~z2 = # 2
d2c0

dx̂2 + c0
@f
@~y

(~y = 1, ~z)

" #
, (B 9)

and, 8n [ N), d2
An

d~z2 # p2n2An = 2(#1)n+1c0
@f
@~y (~y = 1, ~z). From (B

8a), we obtain that 8n [ N,

dAn

d~z
(~z = 0) = 0, (B 10)

and from (B 8c), c0(@f=@~z)(~y, ~z = ~h) = 1
2 (dA0=d~z)(~z = ~h)+P1

n=1 (dAn=d~z)(~z = ~h) cos np~y. Using once again the orthogonal-
ity of the set of cos np~y in the interval 0 " ~y " 1, we obtain

dA0

d~z
(~z = ~h) = 2c0

ð1

0

@f
@~z

(~y, ~z = ~h)d~y: (B 11)

Solving (B 9) with boundary conditions (B 10) and (B 11) yields
the compatibility equation for c0

d2c0

dx̂2 +
c0
~h

ð1

0

@f
@~z

(~y, ~z = ~h) d~y +
ð~h

0

@f
@~y

(~y = 1, ~z) d~z

" #

= 0:
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Now, by flux conservation,
ð1

0

@f
@~z

(~y, ~z = ~h)d~y +
ð~h

0

@f
@~y

(~y = 1, ~z)d~z = # 1
2

~q‘,

hence
d2c0

dx̂2 +
~q‘
2~h

c0 = 0:

The solution of this equation subjected to boundary conditions (B
8e) and (B 8f ) is simply

c0(x̂) = exp #x̂

ffiffiffiffiffi
~q‘
2~h

s !
, (B 12)

which fully determines the solution at leading order.

We can now compute Qg. From its definition (4.3),
Qg = # 2DP

Ð1
0 dx

Ð1
0 dy(@cP=@z)z=H . From (B 6) and the

definitions of the dimensionless lengths,

Qg = # csat
P #

cout
a
a

# $
w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aDaDP

p ð1

0

@f
@~z

(~y, ~z = ~h) d~y!
ð1

0
c0(x̂) dx̂,

at leading order. The first integral is # ~q‘=2 by definition,
while the second is readily evaluated from (B 12), and

equals
ffiffiffiffiffiffiffiffiffiffiffiffi
2~h=~q‘

q
. This finally yields the expression (4.15) for

Qg, from which we can rewrite (B 12) in the form

c0(x̂) = e#x=Lg : (B 13)
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