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Abstract
We study the influence of variations of cross-section on the drying dynamics by pervaporation in microfluidic channels 
surrounded by water-permeable polydimethylsiloxane (PDMS) walls. Single channels of linearly increasing and decreasing 
width display similar drying time, but different dynamics towards final drying. Single channels with stepwise increasing or 
decreasing width show jumps of the drying velocity when the meniscus separating the water-filled and the dry part of the 
channel crosses the steps. In branched networks, narrower branches tend to dry faster than wider ones. All these observa-
tions are rationalised in the framework of a model based on the solution of the diffusion equation of water through PDMS, 
accounting precisely for the local channel geometry, provided the section variation is slow. This model shows that drying 
velocity depends strongly on the local channel width at the meniscus location. It captures quantitatively our measurements, 
except the magnitude of the velocity jumps in channels with steps. Implications and perspectives of this study are discussed 
in the context of leaf drying by the so-called air seeding mechanism in trees.

1 Introduction

Global warming is an increasing thread for the survival of 
forests (Choat et al. 2018; Brodribb et al. 2020). Evapo-
transpiration at the surface of the leaves, the mechanism 
whereby sap circulates in the xylem from the roots to the 
leaves, puts the sap in a state of negative pressure (Stroock 
et al. 2014; Jensen et al. 2016), all the more that the ambi-
ent atmospheric conditions are dry and warm. Cavitation 
bubbles may then appear in the sap network, and subse-
quently invade it, which can stop the sap circulation. It is 
therefore of primary importance to understand this invasion 
mechanism in leaves, known as air seeding among the plant 
physiologists.

Like the vascular network of animals, leaf venation forms 
complex networks with different levels of hierarchy, recon-
nections, and different sections. The channel section tends 
to decrease in size after each bifurcation, when a channel 
divides into several channels: the section becomes smaller 

and smaller until the terminal veins. It was shown the sec-
tion follows Murray’s law as in animal networks (McCulloh 
et al. 2003): the sum of conduit diameters raised to power 
3 is conserved.

During evapotranspiration, water is transported from the 
veins to the stomata at the surface of the leaves, by diffusion 
through the mesophyll tissue which surround xylem sap in 
leaves. This transport is also called pervaporation in other 
contexts, such as chemical engineering; see e.g. Eijkel et al. 
(2005); Ziane et al. (2015); Ziemecka et al. (2015), and Bac-
chin et al. for a full review. To make a biomimetic system 
mimicking water transport through the mesophyll tissue, we 
use channels made of polydimethylsiloxane (PDMS), fol-
lowing the method by Noblin et al. (2008). This material 
is permeable to water vapour, like the mesophyll tissues. 
Among the different microfluidic or nanofluidic systems 
which have been used for synthetic trees or leaves, soft 
PDMS was preferred over the stiff hydrogels (Wheeler and 
Stroock 2008; Vincent et al. 2012) or nanoporous silicon 
(Vincent et al. 2014), which can withstand negative pressure. 
Here we do not focus on negative pressure and cavitation, 
but on latter stages when air invades the network during 
drying, at pressures close to atmospheric pressure. PDMS 
has then the advantage that it reproduces better the thinness 
and flexibility of real leaves.
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From a physical standpoint, to understand pervaporation-
induced air invasion dynamics in biomimetic networks, we 
study the simplest systems, increasing the complexity by 
steps. We started by single channels (Dollet et al. 2019), then 
elementary networks Dollet et al. (2021), but still at constant 
section. In the current study, we release this restriction, and 
focus on the effect of the variation of section in single chan-
nels and simple branched networks.

2  Materials and methods

All our channels are molded in a thin PDMS layer glued 
on a glass plate, as follows. The glass slide was exposed 
for 30 s to a plasma, then the PDMS imprint was manually 
deposited on the plasma-activated glass surface, taking care 
to avoid folds and blisters of the flexible PDMS sheet. In all 
this study, the height h of the channel and the thickness H 
of the PDMS layer (Fig. 1b) are kept as much constant as 
possible, within the uncertainties of the fabrication process: 
h = 42 ± 3 ! m and H = 88 ± 2 ! m (see later Table 1 for the 
values of h and H measured for separate designs). Hence, to 
study variations of the cross-section, we focus on variations 
of the channel width w (Fig. 1a). We study first single chan-
nels of variable width, then simple networks of channels of 
different widths. However, for the sake of simplicity, in the 
latter case, each portion of network between consecutive 
nodes is of constant width.

The experiments are run as follows. The channels are 
manually cut with a scalpel at the entrance point (the cuts are 
clearly visible in Fig. 2). The glass slide on which the chan-
nels are bond is plunged into a beaker of deionised water 
under low pressure for one hour, until the channels are com-
pletely filled. They are then placed under a constant flux of 
dry air, and their drying from the entrance points onwards is 
recorded with a CCD camera, from which the location of the 
meniscus (or menisci) separating the water-filled part and 
air-filled part of the channels is measured by image analysis.

First, we study two single channels of continuously vari-
able width between the entrance point and a terminal wall 
(Fig. 2a). We focus on channels of total length Lc = 12 mm 
with width varying linearly along the channel between 50 ! m 
and 200 ! m, either decreasing or increasing from the entrance 
to the terminal wall. Second, we study two single channels 
of total length Lc = 10 mm with variations of width by steps 
(Fig. 2b). One channel present five portions (each of length 
2 mm) with widths decreasing from 175 ! m to 75 ! m, and the 
other has four portions (each of length 2.5 mm) with widths 
increasing from 75 ! m to 150 !m.

We study next simple channel networks, and we revisit 
the branched networks which we have studied in Dollet et al. 
(2021). We focus on two configurations. First, we study 
single-node networks, where an entrance channel splits into 
two, three, four or five branches (Fig. 2c). In this paper, each 
of these branches has a different width. Second, we consider 
a “tree” with consecutive subdivisions of the channels into 
branches of smaller widths (Fig. 2d). The choice of the geom-
etry of the tree results from a compromise between the pres-
ence of certain ingredients of complexity (several levels of 
branch divisions, branches of different lengths and widths), 
with yet a simple enough design to allow for simple analysis.

3  Single channels of variable width

3.1  Theory

In this Section, we model the drying dynamics by pervapo-
ration of a single channel of varying width w(x), where x is 
the streamwise coordinate along the centreline of the chan-
nel (Fig. 1a). The channel height is denoted h and the PDMS 
thickness H (Fig. 1b); ! = H − h is therefore the PDMS thick-
ness between the channel top and the outer air. If Q is the 
volumetric flux of water leaving the water-filled part of the 
channel, the conservation of mass writes:

(a) (b)

Fig. 1  a Top view sketch of a channel of varying width w(x), where x 
is the streamwise coordinate along its centreline. The channel is filled 
with water over a length L along its centreline. The origin x = 0 is 
located at the closed end of the channel, and the water occupies the 

region 0 ≤ x ≤ L ; the meniscus separating the water-filled part of the 
channel and its air-filled part is thus located at x = L . b Transverse 
side view of the channel of width w(x) and height h between a glass 
slide and a PDMS sheet of thickness H 
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where the term in brackets is the volume of water inside 
the channel at time t, L being the length of the water-filled 
part (henceforth called water length) and |L̇| the velocity of 
the meniscus. It is worth noting that at a given flux Q, the 
larger the width w(x = L) at the location of the meniscus, the 
slower the meniscus.

There are two contributions to the flux Q = Q! + Qg : 
one by diffusion from the water-PDMS interface ( Q! ), 
and an evaporative flux Qg at the meniscus. We restrict 
our analysis to a slowly varying width: |dw∕dx| ≪ 1 . This 
hypothesis is suitable for slender channels, such as those 
encountered in leaves. For a slowly varying width, the 
streamwise dependence of the concentration field of water 
into PDMS is much weaker than the spanwise dependence, 
and we may neglect the width variation to estimate the 
diffusive flux. Hence:

(1)−Q =
d

dt

[
h
∫

L(t)

0

w(x)dx

]
= hL̇w(x = L),

where q!(w) is the diffusive flux per unit length of a channel 
of constant width w. Inserting in (1), we get:

In Dollet et al. (2019), we have derived the following ana-
lytical prediction of the flux q!:

with DP = 10−9  m2 /s the diffusivity of water in PDMS 
(Watson and Baron 1996), c̄sat

P
= MCsat

P
∕" the mass fraction 

of water in PDMS at saturation (with M = 0.018 kg/mol 
the molar mass of water, ! = 103kg∕m3 its density, 
and Csat

P
= 40  mol/m3 the saturation concentration of 

water in PDMS (Randall and Doyle 2005), this gives 
c̄sat
P

= 7.2 × 10−4 ), RH the relative humidity of the outer air 

(2)Q! =
∫

L

0

q!(w(x))dx,

(3)hL̇w(x = L) = −
∫

L

0

q!(w(x))dx − Qg.

(4)q! = DPc̄
sat
P
(1 − RH)q̃! ,

Fig. 2  Snapshots of the channel 
designs studied in this paper. a 
Single channels of linearly vary-
ing width. Notice their slight 
curvature, due to a slight distor-
tion of the flexible PDMS layer 
when it is bond to glass; this 
has no noticeable influence on 
the dynamics. b Single channels 
with widths varying by steps, 
which are marked by circles 
outside the channels. c Single-
node networks with varying 
number of branches (the results 
with the network with four 
branches will not be presented 
here). All entrance channels 
have a width 100 ! m and a 
length Le = 3 mm. All branches 
have a length Lb = 4 mm. d 
“Tree” design. Branches have 
a length of 2, 1 or 0.5 mm, and 
their width decrease at each 
bifurcation: 175 ! m for the 
entrance channel, then 150, 125, 
100 and 75 !m

(a)

(b)

(d)
(c)
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(henceforth set to zero, consistently with our experiments) 
and q̃! a dimensionless shape factor coming from the resolu-
tion of a diffusion problem:

with ! another dimensionless shape factor quantifying diffu-
sion between the channel side walls and the outer air; under 
reasonable geometrical assumptions quantified in Dollet 
et al. (2019) and holding in our experiments, it equals:

We also use the prediction of Qg made in Dollet et al. (2019) 
with the local value of the thickness at the meniscus loca-
tion, simply denoted w in the remainder of this Section. To 
be rigorous, the assumption |dw∕dx| ≪ 1 is not sufficient to 
make such an approximation, and should be replaced by the 
more stringent condition |dw∕dx| ≪ "1∕2 where ! = DP∕"Da 
is a small parameter (with ! = 0.03 the Henry constant quan-
tifying the water affinity in PDMS (Harley et al. 2012) and 
Da = 2 × 10−5 m2 /s the diffusivity of water vapour in air, 
hence ! = 2 × 10−3 ), because the value of Qg depends on 
the concentration field of water at distances of order !−1∕2w 
away from the meniscus (Dollet et al. 2019). Under this 
approximation, the following prediction holds:

(5)q̃! =
w

"
+ #,

! =
2

"

[
ln

(H + #)h

#2
+

H

#
ln

H + #

h

]
.

(6)Qg =
√
!DaDPhwq̃! .

3.2  Experiments

3.2.1  Channels with linearly variable width

We now test our theory on the two channels with linearly 
variable width. Figure 3a shows the time evolution of the 
water length in these two channels. It is a decreasing func-
tion of time, consistently with the drying process. More 
interestingly, both curves are convex, but the convexity 
is larger for the channel with increasing width compared 
with the one with decreasing width. The meniscus in the 
first channel is faster at the beginning of the drying pro-
cess, but slower at the end, and the total drying time is 
almost similar for both channels.

Qualitatively, this behaviour highlights the influence 
of the local value of the channel width at the meniscus 
location in Eq. (1): the narrower the channel, the faster the 
meniscus at given flux Q. Quantitatively, we can apply the 
model of Sect. 3.1 for a width profile of the form:

with Lc the channel length, w0 the width at the channel 
entrance and w1 the width at its closed end. Inserting (7) in 
(2) and using (4) and (5), we get:

Using the expression (6) of Qg , we get after some algebra:

(7)w(x) = w0 + (w1 − w0)
Lc − L − x

Lc
,

Q! = DPc̄
sat
P

[(w1

"
+ #

)
L −

w1 − w0

2"Lc
L2
]
.

(a) (b)

Fig. 3  Drying dynamics in channels of width varying linearly 
between 50 and 200 ! m, for a decrease ( ◦ ) and an increase ( ◻ ) of the 
width over a length of 12 mm. a Time evolution of the water length, 
and b velocity of the meniscus as a function of the water length. In b, 

the plain curves are fits by Eq. (8) with D1 and D2 as fitting param-
eters. In a, the plain curves result from numerical integration of the 
fitting curves of b. The dotted curves show the case of a channel of 
constant width 125 !m
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with the dimensionless quantity: L̄ = L∕Lc , and two physico-
chemical parameters having the dimension of a diffusivity:

Eq. (8) provides an explicit relationship between the instan-
taneous velocity of the meniscus and its location. Therefore, 
to compare our data and our model, we plot the velocity of 
the meniscus as a function of the water length in Fig. 3b, and 
we fit the curves by (8) with D1 and D2 as fitting parameters. 
We anticipate that these two parameters will serve as fit-
ting parameters for each set of experiments to be discussed 
throughout this study, and we refer to Sect. 5 for a discussion 
of their values.

Figure 3 shows that the fit is excellent. Only small dis-
crepancies are visible for largest values of L, which corre-
sponds to cases where the meniscus is close to the open end 
of the channel and may be influenced by the uncontrolled 
opening of the channel. Furthermore, if we fit independently 
the data for each channel, the values of the fitting parameters 
are in close agreement (see later Table 1). This shows the 
accuracy of our model to explain data in channels of slowly 
varying width.

(8)

[
1 −

(
1 −

w0

w1

)
L̄

]
dL̄

dt

= −
D1

hw1

[(
w1

"
+ #

)
L̄ +

w1 − w0

2"
L̄
2
]
−

D2

Lc

√
h"

×

√(
1 +

w0 − w1

w1

L̄

)(
1 +

w0 − w1

w1

L̄ +
"

w1

#

)
,

(9)D1 = DPc̄
sat
P
, D2 =

√
"DaDP.

3.2.2  Channels with stepwise varying width

We proceed with two channels of stepwise varying length. 
Figure 4a shows the time evolution of the water length in 
these two channels. It is once again a decreasing function of 
time. However, the novel feature of the curves is the occur-
rence of finite changes of velocity at each step, which shows 
more clearly when we plot the velocity of the meniscus as a 
function of the water length (Fig. 4b). The velocity jump is 
positive, respectively negative, at the steps where the width 
decreases, respectively increases.

Qualitatively, as discussed in Sect. 3.2.1, this behav-
iour is consistent with the influence of the local value of 
the channel width at the meniscus location in (1). We can 
compare the experimental data with our model, bearing 
in mind that strictly speaking, the latter does not apply 
to stepwise variations in width, because it relies on an 
hypothesis of slowly varying width. We assume that the 
meniscus is in a portion of width w0 and at a distance L0(t) 
from the upcoming step, and that the water-filled part of 
the channel spans N full portions of length Li and constant 
width wi (for i ranging from 1 to N). The total water length 
is then L(t) = L0(t) +

∑N

i=1
Li , and the total diffusive flux 

(2) writes:

where (4) and (5) have been used. Inserting into (3), we get:

Q! = q!(w0)L0 +

N∑

i=1

q!(wi)Li = DPc̄
sat
P

×

[(w0

"
+ #

)
L0 +

N∑

i=1

(wi

"
+ #

)
Li

]

,

(a) (b)

Fig. 4  Drying dynamics in channels of stepwise varying width. a 
Time evolution of the water length. Here, we use all available data 
points, which are close enough to constitute a seemingly continu-
ous curve. The top curve corresponds to a decreasing width, and the 
bottom one to an increasing width. Successive portions of constant 

width are alternatively figured in plain and dotted lines. b Velocity of 
the meniscus as a function of the water length in channel of stepwise 
increasing (triangles) or decreasing (circles) width. The lines are fits 
by Eq. (10) with D1 and D2 as fitting parameters
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with:

and:

where A is a channel-dependent geometrical parameter:

and D1 and D2 are given by (9).
We fit the data of Fig. 4b by Eq. (10) with D1 and D2 as 

fitting parameters. Contrary to the channels with linearly 
variable width, the agreement between the model and the 
data is not very good; in particular, the model predicts jumps 
in velocity which are much smaller in amplitude than what is 
experimentally observed. Possible reasons for this discrep-
ancy are discussed in Sect. 5.2.

4  Branched channels with different widths

To extend further our study, we now consider branched 
channels, yet without reconnections, and with different 
widths. For simplicity, we study only channels where indi-
vidual branches have constant widths.

4.1  Theory

Let us first consider a meniscus in the entrance channel. It 
is in contact with a water region which spans part of the 
entrance channel and all branches. All these contribute to 
the diffusive flux Q! introduced in Sect. 3.1. Hence, Eq. (3) 
is replaced by:

where L is the total length of the water region, wm is the 
value of the width at the location of the meniscus, and the 
integral on the right-hand side spans all the water region, 
with s a curvilinear coordinate along the centreline of that 
region.

Let us specify the analysis to the case relevant to the 
experiments, of N branches of length Li and constant 
width wi (for i ranging from 1 to N) extending from the 
first node. We also consider that the entrance channel has 

(10)L̇ = −
L + Lsup

"
,

(11)! =
1

D1A
,

Lsup =
D2

D1

√
A
−

N∑

i=1

wi − w0

w0 + !"
Li,

(12)A =
1

hw0

(w0

!
+ "

)
,

(13)hL̇wm = −
∫

q!(w(s))ds − Qg,

a constant width w0 , and that the water inside this chan-
nel spans a length L0(t) . The total water length is then 
L(t) = L0(t) +

∑N

i=1
Li , and (13) becomes:

Proceeding in a similar fashion as in Sect. 3.2.2, we obtain 
that the water length should obey Eq. (10), where the sum 
extends over all the branches ahead of the meniscus. The 
dynamics in intermediate channels also follows (14) and thus 
(10), provided w0 is taken as the local width at the menis-
cus location, and the sum runs over all water-filled branches 
ahead of the meniscus. The dynamics in terminal branches 
is obtained by suppressing the sum from (10). In the current 
case where all branches have a constant width, the dynam-
ics is therefore of the form L̇0 = −(L0 + Lsup)∕" , where the 
characteristic time scale ! depends only on the local width 
(where the meniscus is located), while the length scale Lsup 
depends on the whole network ahead of the meniscus.

We proved in Dollet et al. (2021) that this analysis is true 
as long as all branches are slender (of length much larger 
than the transverse dimensions) and well separated (of 
mutual distances much larger than the transverse dimen-
sions), in order to neglect diffusive coupling between chan-
nels separated by a small distance Noblin et al. 2008.

4.2  Experiments

4.2.1  Single-node networks

Figure 5a, c and e shows the distance travelled by the menisci 
as a function of time in the single-node networks with 
respectively two, three and five branches. In the entrance 
channel, the meniscus velocity increases as the number 
of branches increases, and there is a velocity jump as the 
meniscus in the entrance channel splits into several menisci 
in the branches. This result was already found for single-
node networks with uniform width, and can be ascribed to 
a jump of connected water length when meniscus splitting 
occurs at the node (Dollet et al. 2021). The new feature here 
is that the dynamics of each branch depends on its width: the 
smaller the latter, the larger the meniscus velocity and the 
shorter the drying time. Qualitatively, this is a signature of 
the fact that the typical drying time ! is an increasing func-
tion of the width. This can be seen from Eqs. (11) and (12), 
which show that such a dependence on width arises from the 
interplay between the diffusion between the channel top wall 
and the outer air [giving the term w∕! in (12)], and the diffu-
sion between the channel side walls and the outer air [giving 
the term ! in (12)]. We showed in Dollet et al. (2019) that 
this interplay is responsible for the faster drying of narrow 

(14)hL̇0w0 = −q!(w0)L0 −

N∑

i=1

q!(wi)Li − Qg.
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channels because they are more prone to lose water from 
their side walls, compared to wider channels.

To test more quantitatively the predictions of Sect. 4.1, 
we plot the velocity of the meniscus as a function of the 
water length in the right panel of Fig. 5, and we fit the curves 
by (10). For each single-node network, we impose that D1 
and D2 be the same for the entrance channel and all the 
branches. The right panel of Fig. 5 shows that the fit is sat-
isfactory; in particular, the terminal branches are correctly 
described, also the experimental data show some concavity, 
which may be ascribed to evaporative coupling effects dis-
cussed in Dollet et al. (2021). The entrance channels are also 
well fitted, with the exception of the five-branch network 
where the experimental slope is too large.

4.2.2  Tree network

We now turn to the tree network of Fig. 2d. It comprises 27 
branches, but some of them share the same dimensions and 
“order” in the tree hierarchy, and it is found that they then 
follow a similar dynamics. We gather such branches into 9 
different groups, represented by different symbols in Fig. 6a.

Figure 6b shows the distance travelled by the menisci as a 
function of time in the tree, for all branches. Like for the sin-
gle-node networks, velocity jumps occur at each node. The 
new feature here is that at given depth in the tree network, 
the velocity is an increasing function of the water length 
ahead of the considered meniscus: the shorter the branches, 
the slower the dynamics (see inset of Fig. 6b).

Fig. 5  Drying dynamics in 
single-node networks. From 
bottom to top, networks with 
two, three and five branches. 
Left column: temporal evolution 
of the distance travelled by 
the menisci from the entrance 
point. Right column: velocity as 
a function of the water length. 
Insets in panels d and f are 
zooms on the terminal branches. 
Symbols: entrance channel ( ◦ ), 
branches of width 75 ( ▿ ), 100 
( △ ), 125 ( ⊳ ), 150 ( ⊲ ) and 
175 ! m ( ◻ ). The lines are fits 
by (10), with D1 and D2 as fit-
ting parameters

(a) (b)

(d)(c)

(e) (f)
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Here again, we plot the velocity of the meniscus as a 
function of the water length (Fig. 6c), and we fit the curves 
by (10). We find once again a good agreement between the 
experiments and the data, which suggests that our physi-
cal modelling remains adapted to the case of more complex 
branched networks.

5  Discussion

5.1  Values of the fitting parameters

In each experiment, the two physicochemical parameters 
D1 = DPC

sat
P

 and D2 =
√
!DaDP have been used as fitting 

parameters. Their values are reported in Table 1. They 
show some dispersion, especially for the channels with 
stepwise varying width, for which it has been shown that 
the model is inaccurate. The other experiments yield 
D1 = 0.4 !m2 /s and D2 = 2 × 104 !m2/s. Taking values 
from the literature: DP = 10−9 m2 /s (Watson and Baron 
1996), Da = 2 × 10−5 m2/s, ! = 0.03 (Harley et al. 2012) 
and c̄sat

P
= MCsat

P
∕" = 7.2 × 10−4 [using in par ticular 

Csat
P

= 40 mol∕m−3 (Randall and Doyle 2005)], we compute 
D1 = 0.7 !m2 /s and D2 = 2 × 104 !m2/s. Bearing in mind 
that the values of the physicochemical parameters DP , ! 
and Csat

P
 are known with relatively poor precision, we can 

conclude that the values of our fitting parameters are in 
good agreement with the reported values of DP , ! and Csat

P
.

Fig. 6  Drying dynamics in a 
tree. a Symbols used for the 
different branches. b Tempo-
ral evolution of the distance 
travelled by the menisci from 
the entrance point. The inset is a 
zoom on the terminal branches, 
to help distinguishing their 
drying dynamics. c Velocity as 
a function of the water length. 
The lines are fits by (10), with 
D1 and D2 as fitting parameters. 
The inset is a zoom on the bot-
tom left part of the main plot

(b) (c)

(a)

Table 1  Values of the fitting parameters D1 and D2 , and of the dimen-
sions h and H, for all experiments

Experiment Figure D1 D2 h H
(!m2∕s) (×104 !m2∕s) (!m) (!m)

Linearly decreasing 
width

3 0.410 2.53 39.3 89.3

Linearly increasing 
width

0.394 2.42

Stepwise decreasing 
width

4 0.184 2.83 45.6 84.5

Stepwise increasing 
width

0.540 0.79

2-branch network 5a,b 0.389 1.83
3-branch network 5c,d 0.395 1.62 42.2 87.4
5-branch network 5e,f 0.437 1.32
tree 6 0.265 1.57 41.4 89.2
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5.2  Limitations of the current model 
and perspectives

We have compared all our experiments with a model based 
on the hypothesis of slowly varying width. This enables to 
consider that water diffusion through PDMS acts mainly in 
the transverse direction. We have shown that such a model 
captures well our experimental observations, except the 
case of channels with stepwise varying width.

Obviously, in such a case, the hypothesis of slowly 
varying width is violated at the location of the steps. To 
go beyond and extend the model, the full 3D diffusion 
of water through PDMS should be solved, at least in the 
vicinity of the steps. However, this requires time-consum-
ing numerical simulations, beyond the scope of this study.

Moreover, an additional ingredient may become impor-
tant in the case of steps: when passing an abrupt varia-
tion in channel section, the meniscus curvature necessar-
ily varies at given contact angle, to match the geometry 
of the channel walls. In other contexts, such an effect is 
important for droplet breakup in microfluidic T-junctions 
(Ody et al. 2007) and in soap films and foams in porous 
media (Xu and Rossen 2003; Cox et al. 2004; Géraud 
et al. 2017). This induces variations of capillary pressure, 
hence of pressure in the liquid, which may deform the 
channel, an effect hitherto disregarded in the model. This 
might explain why velocity jumps in Fig. 4 are much more 
marked in experiments that in the model. Interestingly, in 
the context of tree physiology, such effects are relevant in 
the xylem network of trees (Tyree and Sperry 1989; Choat 
et al. 2003), where xylem vessels are separated by pits of 
nanometric dimensions where menisci between embolism 
and liquid can get trapped while undergoing huge varia-
tions of capillary pressure. In an upcoming study, we will 
revisit this effect by mimicking pits in microfluidic experi-
mental micromodels, to clarify the couplings between dry-
ing, meniscus dynamics, capillary pressure variations and 
channel deformability.

6  Conclusions

Our study revealed that drying in networks with channels 
of variable sections are well described by a generalised 
version of our previously published model, consisting 
in the integration of the section-dependent diffusive flux 
over the length of the channels (Eq. 3). This model fits 
very well with experiments for linearly varying section, 
stepwise-decreasing width and division in branches with 
different sections. The drying dynamics is always smooth, 
without any arrest, just velocity changes. However, studies 
on real leaves (Ponomarenko et al. 2014; Brodribb et al. 

2016) showed a stop-and-go dynamics with arrests and 
sudden jumps. This peculiar dynamics may be the conse-
quence of the fact that conduits are not fully continuous 
in plants, but are made of collection of separate conduits 
connected by pits. Future work will focus on the effect of 
tiny constrictions in drying dynamics.
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