
 

Acoustics of Cubic Bubbles: Six Coupled Oscillators
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We introduce cubic bubbles that are pinned to 3D printed millimetric frames immersed in water. Cubic
bubbles are more stable over time and space than standard spherical bubbles, while still allowing large
oscillations of their faces. We find that each face can be described as a harmonic oscillator coupled to the
other ones. These resonators are coupled by the gas inside the cube but also by acoustic interactions in the
liquid. We provide an analytical model and 3D numerical simulations predicting the resonance with very
good agreement. Acoustically, cubic bubbles prove to be good monopole subwavelength emitters, with
nonemissive secondary surface modes.
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Introduction.—Spherical air bubbles in water are
known to be excellent acoustic resonators [1,2] because
of the important compressibility of the gas compared to that
of water, allowing a large amplitude of vibration. Further-
more, the wavelength at resonance is far bigger (500 times)
than the bubble size. Bubbles are therefore good candidates
for the design of new acoustic metamaterials including
bubbles as subwavelength building blocks. Such metama-
terials show an enhanced absorption at resonance [3,4] or
feature remarkable properties such as a negative index of
refraction [5–7] or the ability to focus acoustic energy with
a subwavelength precision [8].
If large vibration amplitudes are possible in water, the

experimentalist is quickly facing two important issues with
spherical bubbles in water. First their stability in space is
not insured because of buoyancy [9], meaning that bubbles
need to be kept under a surface or a net before acoustic
excitation [10]. Another solution is to include bubbles in a
gel [3], but care has to be taken to choose a very soft gel and
to not add elastic effects. A second major challenge is the
dissolution of gas in the liquid. Indeed the curvature of the
surface is responsible for a capillary overpressure that
triggers dissolution, even into equilibrated or oversaturated
water [11]. Stability analysis shows that a spherical bubble
is thus always unstable in the long term.
Here we would like to introduce cubic bubbles, designed

in order to overcome the issues of stability in position and
in size while still performing a large amplitude of vibra-
tions. Our approach is to pin the bubbles within 3D printed
frames, resulting in bubbles with flat faces, and therefore no
capillary overpressure.
Methods.—The 3D printed frames are crafted in a

photoresist polymer with a stereolithographic technology
(Kudo3D, 50 μm in horizontal resolution and 100 μm in
vertical resolution). We chose the simplest shape for these
frames: a cube [Fig. 1(a)]. The interior size of the cube
is 2a ∈ ½0.9–2.1 mm], and the edge size e ¼ 0.5 mm.

The frames are then silanized for 20 min using vapor-
phase deposition of trichloro(perfluorooctyle)silane. This
renders the photoresist hydrophobic and enhances the
stability of the bubbles over time.
When slowly immersed in deionized water (equilibrated

with the ambient atmosphere), a volume of air is trapped
in the frame, and six water-air interfaces are created
[Fig. 1(b)]. The solid surface being hydrophobic, the
interface usually attaches on the external corners, with a
roughly flat surface [the blue continuous lines in Fig. 1(c)].
Sometimes the interfaces attached on the inner corners;
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FIG. 1. (a) Design of a cubic frame (the holding pedestal plate
not represented). (b) Top view of the immersion of the cubic
frame in water: a gas bubble is trapped, and interfaces are visible
on each face. (c) Schematic drawing of a cross section of the
cube, showing the amplitude of vibration ξi of an interface
labeled i, while other faces j have an amplitude ξj.
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these bubbles were discarded. Acoustic measurements are
performed right after immersion. Bubbles are then excited in
a tank (30 × 20 × 20 cm) using an underwater loudspeaker
(Visaton, model FR13WP) driven by one period of sinusoid
centered at 2.6 kHz, with a typical pressure of 100 Pa, low
enough to drive only a linear response. A hydrophone (Brüel
& Kjæ r 8103) records the pressure signal PðtÞ in the
presence of the bubble, and P0ðtÞ in the absence of the
bubble, which allows us by substraction to extract the signal
emitted by the bubble only [Fig. 2(a)]. The resonance
frequencies of the bubbles were then extracted by computing
the Fourier transform of the pressure signals and writing the
relative bubble contribution,

ÂðfÞ ¼ P̂ðfÞ − P̂0ðfÞ
P̂0ðfÞ

; ð1Þ

and looking for the frequency f ¼ fres such that jÂðfÞj is
maximal [inset of Fig. 2(a)].
Stability.—Having designed cubes of differing lengths,

we found that air bubbles are trapped if the opening length
does not exceed 2amax ¼ 2.1 mm. Beyond this length,
water enters the frame. This is explained simply by the
fact that at larger lengths the hydrostatic pressure induced
by gravity overcomes surface tension σ, preventing water
from entering. The crossover occurs for a size of the order
of the capillary length lc ¼ ðσ=ρlgÞ1=2 ≃ 2.7 mm, which is
indeed in the millimetric range of our observations.
Because the interfaces are pinned to the exterior of the
edges after immersion [Fig. 1(b)], they are roughly flat,
canceling any capillary overpressure, contrary to spherical
bubbles. We observe that cubic bubbles can easily live more
than a few days in still water without any temperature
control or dissolved gas concentration control. After a few
hours, we observe a slight tendency for interfaces to enter
into the frames, thus reducing the gas volume.
Acoustic oscillations.—We wanted to test whether those

bubbles were as good resonators as spherical bubbles, in
spite of the rigid frame on which interfaces are pinned.
Such a frame potentially restricts the oscillation amplitude.
Under pulse excitation, we observed that cubic bubbles
behave as clear acoustic resonators in the audible range
[Fig. 2(a)], with a well-defined resonance frequency and a
quality factor Q ≃ 20, slightly lower than that of spherical
bubbles of similar size (Q ≃ 35) [12]. The vibration
amplitudes at the excitation pressure were minute and
smaller than 10 μm, confirming a linear acoustic regime.
Experiments varying the aperture length 2a with a fixed
pillar size e show that this resonance frequency increases
with smaller size [Fig. 2(b)].
A crude model can be made assuming that the volume of

gas [inner space calculated using the cube dimensions
Vg ¼ ð2aÞ3 þ 6ð2aÞ2e] can be reshaped into an equivalent
sphere of radius Req given by Vg ¼ 4πR3

eq=3. The Minnaert
formula for resonance of a spherical bubble [1], f ¼ α=Req

with α ≃ 3.24 m=s, is then a first approximation, although
it overestimates the experimental results.
Here our goal is to present an analytical model that

takes fully into account the geometry dictated by the cube
edges. Such a model should predict the effect of varying the
number of open faces. We will present also a numerical
calculation of the propagation of sound through this
complex geometry to consolidate our analytical predic-
tions. We will see that the presence of the cubic frame
modifies the frequency, and it is therefore not just a matter
of the volume of the gas.
Model for a cubic bubble: Six coupled oscillators.—

Each of the six interfaces can be modeled as an individual
oscillator, with a massm and a stiffness k. For this purpose,
we describe the displacement of interfaces monitored
by the displacement at the center of the interface ξi [see
Fig. 1(c)], which is assumed to be small in front of the
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FIG. 2. (a) Signal emitted by a bubble (2a ¼ 2.1 mm) after a
pulse excitation. (Inset) Frequency spectrum of the signal
emitted, normalized by the signal without a bubble, showing
the norm and the cosine of the phase. (b) Measured frequency
when varying the inner space between pillars 2a, keeping
e ¼ 0.5 mm fixed. Crosses, 3D simulation; line, theory for a
cubic bubble with six coupled oscillators [Eq. (5)]; dashes,
Minnaert frequency for a bubble of the same gas volume.
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bubble size, ξ ≪ a. With an interface shape assumed to be
parabolic (and thus with a homogeneous curvature induc-
ing a homogeneous Laplace pressure jump), the average
displacement over the surface is therefore ξ̄i ¼ ξi=2.
According to Refs. [13,14], the reaction force necessary

to set the liquid into motion just in front of the opening is
m ̈̄ξi, giving the added mass per interface m ¼ 32

15 ρla
3. Here

we assume that the interface is circular and of radius a, thus
neglecting the corners, and that the aperture is embedded in
an infinite plane. In addition, the interface displacement
gives rise to two elastic restoring forces. The first one is
−kgξ̄i, a restoring stiffness due to the gas compression
kg ¼ κP0ðπa2Þ2=Vg, with κ being the polytropic exponent
of the gas (close to the adiabatic specific heat ratio for
millimetric bubbles), P0 the gas pressure, and Vg the
volume of gas trapped. Here we assumed the other interface
to remain immobile. The second force is −kσξ̄i, with kσ ¼
8πσ being a capillary term due to the change in surface
area. Tackling this with millimetric dimensions, we find
that kσ=kg ∼ 10−2 and that capillary forces can be safely
neglected, and the stiffness is simply k ¼ kg þ kσ ≃ kg.
A single interface is therefore a mass-spring system with

a resonance frequency ðkg=mÞ1=2=2π. To verify this pre-
diction, we designed a variation of our cubic bubble adding
solid walls instead of the openings, resulting in N open
faces with mobile interfaces and 6 − N walls. We find that
there is very good agreement between this prediction and
the experiment with only one open face [N ¼ 1, the first
point of the curve in Fig. 3(a)].
By opening an increasing number N faces (chosen to be

adjacent), we observe that the frequency depends strongly
on N [Fig. 3(a)]. This suggests that faces are not indepen-
dent, but instead coupled, oscillators.
We found that these oscillators excited by the incoming

acoustic pressure Pac are actually coupled through the gas
and the liquid. The couplings are (1) a gas coupling
because when other faces j also move, they compress
the common volume of gas, with each face changing the
gas pressure by −kgξ̄j=πa2, and (2) an acoustic coupling
through liquid because other faces generate an oscillating

flux Q ¼ πa2 _̄ξj, resulting in a monopolar acoustic pressure
that decays with the distance to the center of the face r:
P¼ ρl _Q=4πr ¼ ρla2

̈̄ξj=4r (the near-field limit) and modi-
fying the pressure on other openings. With the size being
small compared to the wavelength, we neglect retardation
effects and retain the far-field monopolar expression.
Overall, if we write the sum of forces acting on each

interface labeled i (displacing the effective mass m), we
obtain the following set of coupled harmonic oscillators,

m ̈̄ξiþkgξ̄i¼−πa2Pac−
X

j≠i

!
kgξ̄jþπa2ρla2

1

4rij
̈̄ξj
"
; ð2Þ

with Pac being the applied acoustic pressure and rij the
distance between the centers of faces i and j.
Because of the rotational symmetry of faces on a cube,

all faces are equivalent, leading to a distribution of the
distances rij between one face i and the five other ones
independent of i. The last term on the right-hand side of
Eq. (2) is therefore independent of the face number i for
N ¼ 6 (with a restriction N < 6 that we will discuss just
below). Under the same applied pressure, it is reasonable to
consider that all faces oscillate with the same amplitude and
phase: ξ̄i ¼ ξ̄j. The previous equation becomes that of a
simple harmonic oscillator with an effective mass

meff ¼ mþ πρla3
X

j≠i

a
4rij

ð3Þ

(a)

(b)

FIG. 3. (a) Resonance frequency as a function of the number of
open faces (orange stands for open faces). Lines express the full
theory (continuous line) and Minnaert approximation (dashes),
2a ¼ 2.1 mm. Crosses, 3D simulation. (b) Pressure scattered by a
cubic bubble (2a ¼ 1.4 mm): here an instantaneous cross-section
snapshot computed with a 3D finite-difference time-domain
(FDTD) simulation in which the bubble oscillates at its natural
resonance frequency after a wideband pulse excitation.
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and an effective stiffness

keff ¼ Nkg ð4Þ

since all oscillators compress the same gas volume,
demultiplying the resulting overpressure.
On a cube geometry, the distances between the centers of

adjacent faces is rij ¼
ffiffiffi
2

p
ðaþ eÞ. Since waves travel in the

liquid, we found it more appropriate to take the shortest
path in the liquid, that is rij ¼ 2ðaþ eÞ. If only N faces are
open (chosen to be adjacent), it is straightforward to find by
geometry that a good approximation of Eq. (3) is meff ¼
mþ ðN − 1ÞΔm with Δm ¼ πρla3½a=8ðaþ eÞ&. This
approximation is exact when N ¼ 1, 2, 3 adjacent faces,
and a slight deviation occurs when N ¼ 4, 5, 6 because
of the presence of an opposite face distant from rij ¼
4ðaþ eÞ in terms of the liquid path. Note that strictly
speaking this opposite face breaks the rotational symmetry
for N ¼ 4, 5 since not all faces have the same coupling
terms (depending on rij) as the other ones, and the single
oscillator model is not valid anymore.
The resonance frequency of the coupled oscillators is

ðkeff=meffÞ1=2=2π and is written

fres ¼
1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NκP0π2a4=Vg

32
15 ρla

3 þ ðN − 1ÞΔm

s

: ð5Þ

Note that the gas volume is given by the inner volume plus
the space between the pillars, Vg ¼ ð2aÞ3 þ Nð2aÞ2e.
Equation (5) is the main prediction of this Letter: it gives

the resonance frequency [Fig. 2(b)], with better agreement
for small 2a=e aperture ratios than in the Minnaert
prediction. For larger 2a=e ratios, the Minnaert prediction
is a better approximation, which is consistent with the fact
that our model includes the mass m for a vibration of an
interface embedded in an infinite plane.
With this formula, we can predict in addition the effect

of a varying number of open faces plotted on the
experimental curve [Fig. 3(a), line]; we find that it works
with no fitting parameter. The agreement is excellent for a
small number of openings, while the Minnaert model is
clearly out of scope for small N numbers. Note that the
gas volume increases slightly with N since the solid walls
are open, explaining the decrease of the Minnaert pre-
diction [Fig. 3(a), dashes].
The present arrangement with N ¼ 6 provides a remark-

able rotational symmetry that ensures that all interface
oscillators are equivalent (namely, the system is symmetric
when changing the face indices), contrary to a planar (or
volumic) arrangement of monopole oscillators since in the
latter case oscillators on the edges are not equivalent to the
ones in the center. Another difference from separate wells
in a planar arrangement [15] is that the resonance frequency
decreases with the number of wells with a separate amount

of gas since only the effective mass is increased by acoustic
coupling. Here the frequency initially increases with N
because the effective stiffness also increases with the gas
coupling, with the gas being shared by interfaces.
Monopole emission of a cubic bubble.—In order to

specify the precise distribution of sound and verify the
validity of our assumptions, we conducted 3D numerical
simulations of soundpropagation through the cubic bubbles.
The simulations were implemented with a finite-difference
time-domain (FDTD) resolution of the elastodynamic
equation for both the fluid and the solid structure, based
on a freely available software developed in our group [16].
Wemodel the frame as a solidmaterial (with properties close
to that of Plexiglas), and water and air were modeled as
perfect fluids. A simulation volume of 20 × 20 × 20 mm3

was meshed with a grid step of 100 μm, surrounded by
perfectly matched layers to mimic propagation in an
unbounded medium. Wideband pressure pulses in the
kilohertz range (2 kHz center frequency, 200% bandwidth)
were propagated with and without the presence of the cubic
bubble, analogous to the experimental situation, to derive the
resonant frequency of the bubble. The validity of our
approach was first confirmed by simulating the response
of spherical air bubbles of different sizes, which yielded
values of the resonant frequency in excellent agreement with
the value predicted by the Minnaert theory (accuracy better
than 0.5%). (See the Supplemental Material for further
details [17].)
Our simulations confirmed the behavior observed exper-

imentally for the effects of size [Fig. 2(b)] and the number
of faces [Fig. 3(a)] while shedding light on the determinant
parameters of the resonant frequency: it was observed by
removing the solid frame (only possible with simulations)
that the resonant frequency of a cubic air bubble is very
close (typically less than 1% relative difference) to that of a
spherical bubble of equivalent volume. It is therefore the
presence of the solid frame which turns the cubic bubble
into six coupled oscillators, each pinned to a rigid frame, as
assumed by our analytical model. Other important infor-
mation from the simulations is that cubic bubbles behave
the same with monopole acoustic sources [Fig. 3(b)] as
with spherical bubbles.
A side effect: Capillary surface modes.—At much larger

amplitudes of acoustic pressure, we observed resonant
surface modes with nodes and antinodes across the square
interface (see Fig. 4, red arrow).
In order to reach such high acoustic pressures, we

designed a specific setup: a steel tank with glass windows
(see Fig. 1 in the Supplemental Material [17]), with a
shaker pushing or pulling the water directly through a
tight orifice. A precise map of the vibration amplitude of
those surface modes was performed on a customized cube
(see Fig. 2 in the Supplemental Material [17]). Such an
elevation map is morphed on the top face of the image
in Fig. 4.
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We interpret those modes as standing capillary waves.
The modes are probably directly excited by the contact line
on the edges, without any parametric instability. Note that
these modes are not emissive: there is no signature for them
in the frequency spectrum from hydrophone recordings.
Conclusion and perspectives.—We have shown that

cubic bubbles are good candidates for the design of acoustic
metamaterials: they are subwavelength resonators with a
good quality factor and an isotropic emission field close to
the one of spherical bubbles. Furthermore, they are easy to
assemble in a large number using 3D stereolithography,
allowing for stability in space and time. Because they have
flat interfaces, there is no capillary overpressure that would
tend to speed up dissolution. Moreover there is no rectified
diffusion under oscillations that would inflate the gas
volume, as is the case with spherical bubbles [18,19].
Future work will aim at understanding the interaction
between a large number of cubic bubbles, paving the way
to precisely designed acoustic metamaterials.
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