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Fragmentation of stretched liquid ligaments
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The dynamics and fragmentation of stretched liquid ligaments is investigated. The ligaments are
produced by the withdrawal of a tube initially dipping at a free surface. Time resolved high speed
motion experiments reveal two different elongation behaviors, depending on the nondimensional
number é¢,,, ratio of the extension rate € to the capillary contraction rate 1/¢, with ¢, the capillary
time based on the tube diameter. For slow extensions (small é7,) the liquid bridge linking the tube
to the reservoir contracts above a critical elevation, eventually following a self-similar contraction
before break-up. For fast extensions (large é¢,,) the bridge takes the form of a cylindrical ligament,
stabilized by the stretching motion. Whatever the elongation rate is, the ligament detaches from the
surface at a time of order ¢, after the beginning of the extension. If only one small droplet is
produced with a slowly stretched bridge, a set of droplets with distributed sizes is obtained from the
break-up of the ligament submitted to a fast extension. We discover that an aggregative process
comes into play between the blobs constitutive of the ligament as it fragments. The outcoming
Gamma distribution describes well the observed broad drop size distributions. © 2004 American

Institute of Physics. [DOI: 10.1063/1.1756030]

I. INTRODUCTION

When a tube whose end dips into a liquid is rapidly
withdrawn from a free surface it entrains a liquid ligament.
This ligament is stretched between the tube end and the lig-
uid free surface. It eventually separates from the liquid bulk,
and fragments into dispersed droplets. This simple phenom-
enon is a paradigm for spray formation in many instances
since the formation of a ligament is the last but one step
before drop separation.

For example, the formation of spume, or the atomization
of a liquid surface by a fast gas stream implies the formation
of liquid ligaments stretched out of the surface, whose
break-up determines the droplets sizes in the subsequent
spray.' Other atomization processes, such as the break-up of
high amplitude waves resulting from a Faraday excitation of
a liquid surface, do have a transient state where stretched
liquid ligaments are formed and eventually break into
droplets.> More generally this paper also addresses the prob-
lem of the dynamics and breakup of the liquid column left in
the wake of an object emerging from a liquid surface.

Liquid ligaments were extensively studied in their static
form when suspended between two disks (liquid bridges).
Their stability is experimentally assessed in the plateau tanks
which compensate gravity by handling equal buoyancy lig-
uids, in order to point out the effect of interfacial tension on
stability. The influence of gravity on the shape and stability
of the bridges was stimulated by microgravity experiments,
and was analyzed for vertical bridges.*> The shape of a ver-
tical bridge was first solved, numerically,ﬁ’7 on various axi-
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symmetric situations, including the two disk configuration,
as well as the rod in free surface situation, where the bridge
connects a disk and a liquid reservoir. Bridges are also
formed during the detachment of a pendant drop from a
faucet®™® and their stability accounts for the released drop
size at very low flow rates (see the review of Eggers'?). It
was recently observed that the neck in between the faucet
and the droplet takes the form of a long smooth cylindrical
filament when the liquid has viscoelastic properties.!! The
break-up occurs in single location point, and the two remain-
ing parts recoil quickly.

The effect of stretching on the stability of a liquid liga-
ment was analytically investigated by Frankel and Weihs'?
for the case of inviscid liquid cylinder. With very viscous
fluids, the stability was inspected by Henderson et al.’ The
extension of a liquid ligament is used to measure the exten-
sional viscosity of non-Newtonian liquids. A constant elon-
gation rate is imposed,'® meaning an exponential extension
of the length with time, while the axial forces on the end of
the bridge are recorded. These measurements motivated nu-
merical simulations of the stretching of a Newtonian fluid
between a fixed disk and a moving disk, to establish the
effect of viscosity on the diameter diminution and on the
forces acting on the disks.'*

Let us first examine the characteristic time scales in-
volved in the ligament motion. The two main parameters are
capillarity and elongation. The characteristic time of a capil-
lary driven motion is the capillary time ¢, . At the scale of
the diameter D of the tube it writes ,= ple/ o, with p the
liquid density and o the surface tension. The elongation is
characterized by the rate é=(dH/dt)/H, with H the eleva-
tion of the tube over the liquid surface (Fig. 1). The elonga-
tion and capillary rates are compared using the nondimen-
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FIG. 1. Ligament contraction with a small elevation velocity (water, D
=7 mm, At=10.7 ms).

sional number €7, , ratio of the imposed elongation rate €,
and the intrinsic capillary rate 1/¢,.. In the present experi-
ments, viscous effects are negligible compared to capillarity.
The viscous diffusion time is #,=D?/v, with v the viscosity
of the liquid, and we can define a viscous rate with 1/¢,. The
relative magnitude of the viscous rate compared to the cap-
illary rate is estimated by the Ohnesorge number Oh
=t,/t,= \/pvz/Do: The Ohnesorge number when the tube
exits out of the reservoir is 0.001 to 0.003 for water and
ethanol ligaments, and 0.05 to 0.13 for the most viscous
silicon oil, indicating a predominance of capillary-inertial
forces on viscosity. The relative influence of gravity com-
pared to stretching inertia is estimated by the Froude number
Fr=gH/(dH/dt)?, which in all the experiments was initially
smaller than unity.

We will present in the following paper the evolution of
the ligament in two limits. In the slow extension limit, éf,
<1, the ligament has the shape of a bridge. When extension
is fast, é7,>1, we will show that a long cylindrical part
develops at the center of the ligament. We will eventually
focus on the break-up of this extended columnar shape, and
the subsequent droplet size distributions.

Il. EXPERIMENTAL SET-UP

Liquid ligaments are produced from a liquid reservoir
whose surface is at rest. The liquid reservoir has a diameter
of 5 cm, which is large compared to the tube diameter. The
glass tube is placed vertically so that its lower end dips
slightly under the surface. The tube can then be quickly with-
drawn manually, being careful to follow a vertical axis. A
cable and a pulley were also used for that purpose. The maxi-
mum initial velocity we could obtain was about 2 m/s. Prior
to the motion the tube was filled with the same liquid, and
closed at the upper end so that the liquid does not fall. When
some air pocket was trapped in the tube, only the bottom of
the pipette was filled with liquid. However, there was no
volume variation of the air pocket, and the bottom liquid

TABLE I. Liquid properties measured at 20 °C.
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FIG. 2. Minimum diameter and elevation before break-up (éf,=0.25).

inside the pipette was entrained at the velocity of the pipette.
A hollow tube was preferred to a plain rod because the liquid
was not always properly attached to the latter, whose lower
surface was subject to dewetting.

The outer (wetted) diameters of the tube were 1.4, 5, 7,
and 15 mm. To explore the effects of fluid properties we used
different liquids: distilled water, ethanol 95% (o
=22 mN/m), and two silicon oils (=22 mN/m), that are 5
and 20 times more viscous than water (see Table I). Images
were recorded on a high speed motion camera, Kodak Hs
Motion Analyzer 4540 MX (at the typical frequency of 2250
frames per second and images were 256 pixels wide).

lll. DYNAMICS OF THE LIGAMENT
A. Slow extension €t <1, volume contraction

When the liquid ligament is slowly extended, the bridge
has time to adjust its shape to reach a stable equilibrium at
each instant of time. Above a critical elevation no stable
equilibrium exists and the bridge quickly contracts. It ulti-
mately forms a thin cone over the plane surface (Figs. 1 and
2). After break-up the retraction of the cone creates a tiny
satellite droplet.

The stability of the bridge, at a given elevation, is de-
rived through the resolution of the Laplace equation, which
states that the pressure difference between the inside and
outside of the surface is AP = ok, with k the curvature of
the surface. At equilibrium, for every altitude z the Laplace
pressure equilibrates the hydrostatic pressure, and the
Laplace equation writes ok = — pgz. The numerical resolu-
tion of this equation shows that it exists as a stable shape
until a critical elevation of the tube, above which no solution

Liquid Density p (kg m~%) Viscosity v (m*s™1) Surface tension o (N/m)
Water 993 1x10°¢ 73% 1073
Ethanol 95% 785 1.47x107° 21.5%1073
Silicon oil V5 913 5%x10°° 225%1073
Silicon oil V20 942 20%107° 22.5%1073
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FIG. 3. Ligament thickness at the neck before break-up. Lines: power laws.

exists.!®> This behavior is also found when considering the
classical case of the equilibrium shape of a film between two
rings of equal diameter: it is a catenoid, that exists only when
the distance between the rings is smaller than a critical value,
of about 0.66D. On the contrary, in the present case the
maximum elevation always depends upon the relative influ-
ence of gravity over capillarity,'> which is expressed by the
Bond number Bo=pgD?/o. With the tested diameter D
=7 mm, the Bond number is 6.9 and according to the nu-
merical results of Padday and Pitt'> the critical elevation is
about 1.3/, or 0.49D. When tube diameter D is very large
compared to the capillary length [,=+o/pg, meaning that
the Bond number Bo=(D/I,)? is very large, the critical el-
evation tends to 2/,,.

The slow extensional motion therefore leads the bridge
towards an unstable shape, and results in the bridge pinch-
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FIG. 4. Contraction regimes: initial contraction of the whole volume and
contraction of the central part.

off. The minimum diameter ¢ of the bridge as a function of
time before break-up 7 —t, shows two regimes of contraction
(Fig. 3).

Those regimes are linked to the different geometries of
the flow during the contraction: initially the whole volume is
contracted by capillary forces (since excess capillary pres-
sure is equally distributed), while prior break-up the pinch-
off area volume is dominantly contracted (since capillary
pressure is concentrated in this area), see the illustration of
Fig. 4.

An analysis of the characteristic volumes involved in the
contraction enlightens the power dependence of the bridge
diameter as a function of time before break-up. Initially, the
displaced volume scales as V~&2D and exits through the
lower surface of order S~ D? (the bridge shape being quasi-
symmetric). Since the pressure at the center is 207/¢ and van-
ishes at the free surface of the reservoir, we can estimate the
fluid velocity at exit, from the steady flow Bernoulli equa-
tion: u~2+\o/pé& The conservation of volume dV/dt
=—uS yields

FIG. 5. Fast elongation of a liquid wa-
ter ligament, capillary tube of diameter
D=7 mm, time intervals At=4.5 ms.
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with a a constant of order 1 that would be derived by a
detailed analysis of the flow geometry.

Eventually, just prior break-up, the motion is essentially
concentrated in a region of volume V~§3, and empties
through a surface of order S~¢>. The motion is
self-similar.'® These estimates of exit velocity and volume
conservation then lead to

é- t 2/3
5~(1—B—) : @

t(r

with 8 another constant of order 1. These two regimes are
indeed displayed when plotting & versus 7,—t (Fig. 3).

The pinch-off of a symmetric film bridging two circles,
exposed by Cryer et al.'” and detailed numerically by Chen
and Steen'® on the inviscid approximation, also displays the
same — 2/3 regime during the contraction of the central part.
In this exactly symmetrical configuration (where gravity is
not acting), thus different from the present study, the contrac-
tion regime is self-similar only on a limited range of time.
The central part contracts into a tiny cylinder instead of the
present cone, and then pinches off on two symmetric points,
which leads to the formation of the satellite droplet. These
two pinch-off points are then asymmetric because they take
place between a cylindrical part and a conical part, and they
behave in a truly self-similar way until break-up.

We have to emphasize that the above discussion has
been conducted in the inertial limit which does not hold at
infinitely small scales, when Re=\c ¢/ pvz becomes small.
Viscous effects then become significant as well at the very
last moment of the contraction, but the time period of their
predominance is short'® compared to the overall pinching
period 7.

B. Rapid extension €t,>1, columnar shape

When the extension is rapid compared to the initial cap-
illary time, the central part of bridge takes the shape of a
liquid column. This section will focus on the dynamics of
this column, for its break-up is at the origin of a set of drop-
lets (Fig. 5).
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FIG. 6. Dimensions of the liquid column during its development (initially
€t,=5).

1. Observations

The lengths were measured on the high speed image
sequences; we distinguish the diameter of the central part &,
the elevation of the tube over the free surface H, and the
length of the approximately cylindrical shape L (where the
diameter is & within one pixel). These measurements show
that the elevation H and the columnar part height L do not
have a parallel evolution (Fig. 6). While the growth rate of
imposed elevation H is decreasing (after an initiation period
where H is close to an exponential), the growth rate of the
columnar length L remains constant. Their rate of growth,
shown in the log-lin diagram of Fig. 6, is nevertheless ini-
tially comparable. Another remarkable feature is that the vol-
ume of the cylinder, derived by V.= w&2L/4, remains con-
stant during the extension.

Various emerging velocities were applied [Fig. 7(a)], and
they all show that the columnar length L is initially a small
fraction of the height H, that this proportion increases, and
that the two lengths become eventually very close just prior
to break-up. The diameter ¢ of the column decreases more
rapidly for fast extensions but eventually all the curves fol-
low the same decay [Fig. 7(b)]. At the opposite of the slow
extension case, it is noticed that the central part is destabi-
lized and breaks up only after a pinch-off near the tube end
or near the reservoir. The diameter ¢ therefore does not van-
ish at the time of first break-up.

®)

ED

FIG. 7. (a) Different elongation velocities of H and the
b resulting evolution of L. Last point is break-up (water,
D=5 mm). (b) The corresponding thickness of the liga-
1 ment.
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FIG. 8. Volume of the cylindrical part as a function of the initial velocity of
the tube when it exits (ethanol, D=5 mm).

2. Entrained volume in the column

The volume entrained in the cylinder depends on the
initial conditions of the tube motion, that is the initial im-
merged depth under the surface, and the acceleration given to
the liquid before the pipette exits out of the surface. It can be
noticed that a higher velocity dH/dt at exit produces a larger
ligament (Fig. 8). As we cannot deduce the initial conditions
from our measurements, we will take the entrained volume
as an initial parameter. Measurements with various liquids
show that this volume is typically of order 0.065D°. This
volume can be expressed using the diameter d, it would have
if gathered in a single sphere such that

V= mELIA= 7d}/6. 3)

The diameter d, is typically of order 0.5D.

3. The stretching motion damps the column
contraction

We model the inviscid motion of the liquid column, as-
suming it is a cylinder extending at a constant rate with L
=Lyexp(ér). The extension rate of L is chosen to be the
same as the extension rate of H, as suggested by the obser-
vations when considering the beginning of the extension.

The liquid can flow out of the column through the at-
tached end of surface S=m&*/4 at the velocity u. The exit
velocity can be estimated using the Bernoulli approximation
between the central part of the cylinder of capillary pressure
20/& and the exit surface, where capillary pressure vanishes,
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as was done in the previous section where we had u
=2\o/pé. The continuity equation dV.,/dt=—uS writes

d(€L) [o€
a N @
which solves in
4D 1—e P\
E: l___— e—El‘/Z. (5)
D 5Ly é€t,/2

For the vanishing stretching rate (é¢—0) we find again
the solution for the initial contraction of the bridge [Eq. (1)]:
ED=(1-atlt,)?>, with a=2%D/L,).

For a large stretching rate of the columnar part (éf,
>1), the diameter follows &/D=exp(—é&#/2), which means
that the volume undergoes contraction without breaking nor
emptying (since L& ~cst). A fast stretching motion damps
the capillary contraction and the volume is conserved.

The transition between those two cases is displayed in
Fig. 9 for the diameter and the volume. The volume contrac-
tion is less than 20% at t=t,, when ét,= 10.

4. Motion of the column

The initial extension rate of the column height L is close
to extension rate € of the elevation H. This rate is always
large compared to the capillary rate, é¢,>5 in the present
experiment, the previous section therefore shows that it is
small enough to insure an evolution at constant volume.
Since the liquid is stretched into a column of homogenous
radius it is not subjected to a gradient of capillary pressure
anymore on its surface. The column is only pulled by the
capillary forces at its upper end (Fig. 10).

We model here the motion assuming a cylindrical shape
all along the ligament. To remain cylindrical, the flow at a
point (r,z) in the column has to be extensional, (u,,u,)
=(z/LXL,—r/2LXL). The momentum on the vertical axis
is p,= [ypu,dV=pVLJ/2.

The cylinder is pulled by the capillary force acting on
the perimeter of the upper section. We have also to consider
the liquid pressure acting on the surface of the upper section,
and the gravity acting on the total volume. The momentum
equation writes, after projection on the vertical axis,

ipVL=2mor—Apmr’—pgV, (6)

FIG. 9. Ligament diameter (a) and volume (b) of a
stretched cylinder of length L=L,exp(é&), with in-
creasing stretching rates: éf,=0 (thick line, no stretch-
ing), 0.1, 0.5, 1, 2, 4, 10. The diameter evolution is
increasingly closer to &/D=exp(—é/2) for large
stretching rates.
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FIG. 10. Stretching of the cylinder by the pipette.

with the radius r= &/2. The difference between the inner and
outer pressure, Ap, is here the capillary pressure o/r acting
on the cylinder. The volume is V= 7r2L.

This equation is conveniently written in units of d, for
lengths (introducing the nondimensional length L*=L/d,)
and in units of the capillary time ty= \/pdog/ o for the time
(introducing t*=1/t) giving

d’L* I
=a — —2 Bo, (7)

JL*
with @=2/6. The Bond number B0=pgd(%/a' is small in
our experiments (always smaller than 1), we will neglect its
influence in the following. Equation (7) integrates into the
implicit  solution (2a\L*—a) VadaJL*+a+b=6a*,
where a and b are integration constants determined by the
initial conditions. It is plotted in Fig. 11 with the initial con-
dition ¢é=d, and several initial velocities expressed as a
function of the capillary velocity vo=d,/t,. When the ini-

dr*?

E/d

0.1 | I |
0 0.5 1 1.5 2

t/[t x (do/D)a’z]

FIG. 11. Diameter of the ligament stretched by capillarity for different ini-
tial velocities. Dotted line: exponential fit.

Fragmentation of stretched liquid ligaments 2737
1 F T IIIIIIII T IIIIIIII T TTTTTIH
c D=1.4mm~ 7
i o I
01 —
E/(dE/dt) [ 5mm ]
(s) i ° / 7mm
001 | & -
C 1 m 7
= Y -
0.001 il Ll L
0.001 0.01 0.1 1

t x(d/D)y** (s)

FIG. 12. Decay rate of ligament diameters. Water (full circles), ethanol
(open circles), silicon oils (crossed circles).

tial velocity is small in comparison with v, the diameter &
as a function of time is very close, in the range [0--#4], to
an exponential whose decay time is 7;:

—oce 0 with ty=1,(dy/D)>". (8)

The characteristic time ¢, differs from ¢, since the trac-
tion is performed by capillary forces acting on the ligament
perimeter, of order d,, different from the tube diameter D.

The diameter versus time curves obtained with various
experiments of ethanol and water all show a final exponential
decay [see Fig. 7(b) for a typical case].

The model obtained directly from the equation of motion
thus describes correctly the extension until the time 7, (with
to<t,), but underestimates it for larger times.

The final characteristic decay time &/(d&/dt) is close to
to=t,(dy/D)*?, as shown in Fig. 12, except for the diam-
eter D=15 mm, which was, because of its larger size, sub-
ject to gravity.

IV. LIGAMENT BREAK-UP
A. Time of break-up

Ligaments undergoing a fast extension first break up at
their extremities, either on the top near the tube, or on the
bottom near the liquid container, or both at the same time.
Then the whole column fragments into droplets. The expla-
nation of this preferential location for the first break-up re-
sides in the fact that the central part is stretched, smoothing
the surface curvature to a constant value x=1/R,+1/R,
=2/¢ (the principal curvature in the plane orthogonal to the
ligament axis is 1/R,;=2/&, the other is 1/R,—0). There is
no gradient of capillary pressure in this region. However, at
the ligament ends, the surface bridging the cylindrical part to
the tube or to the reservoir has a vase shape, and the curva-
ture is rapidly decreasing in the direction away from the
cylindrical part (since 1/R, decreases, and 1/R, also de-
creases, becoming negative). The variation of the curvature
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FIG. 13. Time of first break-up.

accounts for a variation of capillary pressure, that displaces
away from the center the liquid contained in the ligament
end: this is the place of pinch-off onset.

The break-up time is therefore fixed by the contraction
of the ends: it scales like the characteristic capillary time 7,
based on the initial diameter, as did the break-up time of the
bridge undergoing a slow extension. The recorded time of
first break-up, ¢, does not significantly depend on the initial
withdrawing velocity (which varied between 0.5 m/s and 2
m/s). It is always close to 7, = 1.0¢,,, see Fig. 13. The largest
diameter, 15 mm, breaks sooner: in addition to the above-
mentioned effect of gravity it was subjected to surface undu-
lations from the beginning of the stretching attributed to a
largest initial Reynolds number (Rey=DH/v~10%). The sili-
con oil ligaments breaks in a slightly longer time, consistent
with a viscous damping of the capillary pinch-off instability.
Indeed the stability analysis'®** shows that the characteristic
time of growth of perturbations on a liquid cylinder is 7,
= \/pl§3/(r><f(Re), with Re=\/§cr/pvz. For large Re, the
function f(Re) is close to unity, but for small Re it becomes
larger than unity,” meaning that viscous effects increase the
pinch-off time of the liquid cylinder. For the same reason, the
contraction of the ends of small diameters ligaments slows
down compared to the pure inviscid estimation.

B. Mean droplet size

Once the ligament has detached from the liquid bulk,
embedding a volume V, it may either gather itself into a
unique droplet of size d, such that V= wd3/6 (for small as-
pect ratio H/¢ of the ligament), or either break into several
droplets. When the ligament is infinitely long, smooth, and
uniform, the characteristic droplet size is the ligament thick-
ness &, . In the present case, the average drop size (d) is in
between these two limits.

Although this is not generally the case (for instance with
airstream elongated ligaments?), the large aspect ratio liga-
ments produced in the present experiments are close to this
uniform limit. The average diameter is about two times &, .
Using Eq. (8) atr=t,,, we have &,/D~exp(—(dy/D)>%). A
good approximation of (d) is 2§, (Fig. 14), the factor 2
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FIG. 14. Mean diameter of the droplets (circles, same symbols as Fig. 12),
diameter of the ligament before break-up (squares, full for water, open for
ethanol). Continuous line: expected diameter &, of the ligament before
break-up; dotted line: 2&,, .

being similar to the one that holds for the break-up of a
smooth cylinder.'°

However, the ligaments are not fully described by this
limit because the distribution of sizes is not a uniform distri-
bution centered around &, . Understanding the full shape of
the distribution is thus necessary.

C. Fragmentation

After pinch-off of the ligament ends, the whole cylindri-
cal column destabilizes (Fig. 5). The ligament is disturbed by
transient surface undulations, and the liquid volumes consti-
tutive of the ligament interact before complete separation.
The droplet sizes in the final state are broadly distributed
(see Fig. 15).

The randomness of the outcoming droplet size is illus-
trated by the images of Fig. 16, showing the size distribu-
tions after the break-up of different ligaments prepared in
similar conditions. It can be pointed out that droplet distri-
butions vary a lot. There is no ordered or deterministic size
sequence along the vertical axis.

A broad distribution of sizes is typical of fragmentation
process involving uncontrolled break-ups. This phenomenon
has been known for a long time and goes beyond the particu-
lar case of sprays. It has prompted several interpretations.

(1) A first class of models was introduced by
Kolmogorov.?!?> The overall breakup is visualized as
a sequential process where mother drops give rise to
daughter drops which themselves break into smaller
drops. In this cascade processes, a particle of initial
volume v breaks, after n steps of the cascade into a
family of drops of volume v,=v,Il}_,«;, where «;
are random multipliers smaller than unity. The loga-
rithm of the volumes is thus distributed Normally,
leading a log-normal distribution for the volumes
themselves. A variant of this model is to consider a
normal distribution of cascade steps n at fixed «
=1/2. In this scenario, the arrow of the evolution is
directed towards ever smaller sizes.
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FIG. 15. Droplet size distribution after break-up. Fit with a gamma distri-
bution of parameter v, see Eq. (13).

(i)  The second class of approach considers the random
splitting of an initial volume in various disjointed el-
ements, in one step. Essentially inherited from the
methods developed for the kinetic theory of gases™
and the physics of polymers,** the idea is to visualize
a given volume as a set of elementary bricks, and to
compute the most probable distribution of the dis-
jointed clusters incorporating the bricks.>"?’ The
most probable distribution is the one that corresponds
to the largest number of combinations (or maximum
entropy) and yields a Poisson law for the distribution
of the volumes. This description is purely combina-
tory, and does not account for any interaction between
the clusters as they separate.

Fragmentation of stretched liquid ligaments 2739
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FIG. 16. Ligament just after complete fragmentation in three different ex-
periments with comparable elongation velocities, slightly increasing from
(a) to (c). The sequence of droplet sizes along the ligament vary a lot from
experiment to experiment (water, D=5 mm).

At the opposite of fragmentation, the dynamical pro-
cesses of aggregation of an ensemble of small elementary
particles was accounted for by Smoluchowski.?® Based on
the assumption that the probability of encounter and aggre-
gation between two aggregates is independent of sizes, the
evolution of the number of aggregates of a given size can be
estimated. It provides a kinetic equation for the evolution of
the number of particles of a each size. This equation asymp-
totically produces decreasing exponential distributions.

Somewhat paradoxically, the break-up of a ligament in
droplets involves aggregative processes during the fragmen-
tation of the ligament. Indeed the high speed time resolved
movies show complex rearrangements of liquid volumes
along the ligament, forming bigger and bigger sizes prior to
break-up. These rearrangements have various sources as the
travel of capillary waves generated by the recession of the
extremities after pinching, the transient growth of the capil-
lary instability, the remnant motions in the liquid bulk. The
classical Rayleigh instability of a quiescent liquid thread of
uniform thickness, which would create a succession of drop-
lets of equal sizes, therefore does not hold. The random
break-up description, which would give exponential statistics
for the droplet volumes, does not apply either because of the
interactions along the ligament.

The ligament consists of a linear succession of liquid
blobs that undergo a continuous interplay during the destabi-
lization. The evolution of their size distribution ultimately
rules the droplet size distribution, when the liquid blobs de-
tach from each other. Let n(d,t) be the distribution of liquid
blobs on the ligament: the number of blobs whose length is
within d and d+dd at time ¢ is n(d,t)dd. We describe the
random rearrangements of the liquid in the ligament by the
motions of v independent layers [see Fig. 17(b)]. We denote
by g(d’,t) the distribution of the layer thickness d’ in each
layer.

Since the layers are adjacent to each other in a section,
each blob is composed of v sub-blobs, and the mean diam-
eter of a liquid blob is (d)=v(d'). The average thickness of
the layers {(d)/v reflects the characteristic mean free path of
the liquid motions in the ligament.

Because of the random liquid motions in the ligament,
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FIG. 17. (a) Subdivision of the ligament in liquid blobs. (b) The internal
rearrangements of liquid in the ligament are modeled by layers of sub-blobs
of diameter d’. Their superposition accounts for the size d of the blobs
along the ligament.

the sub-blobs of a layer overlap and merge. If we assume
they interact randomly with each other in a layer, with no
correlation between their size, the probability of an interac-
tion between two sub-blobs is Kq(d)q(d;)dd,dd}, for
sizes that are within d; and d; +dd; (i=1,2), and produces
a new sub-blob of thickness d|+d} . Since the capillary pro-
cesses are driven at the characteristic time ;= Vp &/ based
on the initial average blob size £=(d),, the interaction fre-
quency is of order K~ 1/t,. The evolution of the distribution
thus follows

diq(d',;1)==Kq(d',nQ(1)+aKq(d',1))*?, )

with Q= [;q(d’,r)dd’ the number of liquid sub-blobs and
q®2=fd,=di+d£q(d{)q(dé)dd£ the autoconvolution of the

distribution. The constant « is determined by the constraint
of overall volume conservation. The first term on the right-
hand side of the kinetic Eq. (9) is the rate of loss due to
aggregation, and the second term the rate of formation of
new sizes by interaction among the particles.

The blobs on the ligament are the superposition of v
independent layers, and d the sum of v independent layers of
thickness d’. The probability distribution of the diameter d
is n/N, with N=ff)°n(d,t)dd the total number of blobs con-

P. Marmottant and E. Villermaux

stitutive of the ligament. It is therefore the probability of a
sum of independant variables whose probability distribution
is g/ Q, and for a given time ¢ we have

l’l_ i ®v
N‘(Q) ' (10)

The evolution of the distribution n(d,?) is then, after a deri-
vation using the Laplace transform of the last two equations,

dn(d,t)=—Kn(d,t)N(t)" '+ BKn(d,t)®7, (11)

with y=1+ 1/v, and B a parameter whose value is deduced
from the conservation of the total volume. This equation is a
generalization of the Smoluchowski equation to an arbitrary
number 7y of entities involved at each interaction.

The conservation of the available volume V
=d*n(d,t)dd determines the prefactor B in Eq. (11) which
is B=1/(3 y—2). The interaction parameter vy is set by the
compatibility of Eq. (11) with the initial distribution of blobs
by

y=(d*)o /[{d);. (12)

A smooth ligament of constant thickness has y=1 and a
corrugated ligament is such that y>1.

The asymptotic solution of Eq. (I1) for p
=n(d,t)/N(t) is a gamma distribution of order v=1/(vy
—1). The very mechanism goes back to the discovery by
Smoluchowski that aggregative systems like ¢(d’,¢) in Eq.
(9) evolving by self-convolution have the property to gener-
ate asymptotically exponential distributions.”® Here the
asymptotic distribution of blobs p(d,t) is a convolution of v
of these exponential distributions, providing

(v

where (d)= [dn(d,t)dd/N(t) is the current average blob di-
ameter. This distribution varies from an exponential when
v=1 to a Gaussian distribution when v is large. It fits well
the final break-up distribution, which displays an asymmetric
bell shape, with an exponential wing at large diameters (see
Fig. 15).

p(x=d/{d))= volem (13)

2
\ \
L ’Y . L "
a
g R |
& 5 | FIG. 18. Left: Evolution of the rough-
1 " ] ness y of the ligament (squares) and of
1 ill h: the surface S/S(t=0) (circles) as a
i | -~ function of the time in units of the cap-
H " illary time ;. The continuous line is a
prediction of the model for S(r).
Right: images of the ligament at four
6 different times. Water, D =35 mm.
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The rearrangements and coalescence of liquid blobs re-
duce their total number. According to Eq. (11) this number
decreases in time as N(2)/N(0)=[1+N(0)""Kt/v(1
+w/3)]”" as well as the surface area of the blob [second
moment of the distribution n(d,f)] which goes like §
~N13

The extraction of the contours of a breaking ligament
from the high speed sequences provides the distributions
m(&,t) of the thickness & along the ligament as a function of
time, from which the distribution n(d,t)=m(d,t)/d of
spheres covering the ligaments as a bead on a necklace can
be computed [see Fig. 17(a)]. From this measure we obtain
the distribution of the liquid blobs p(d,t), their net surface
S(t)=N(t)[d’p(d,t)dd, and the roughness parameter y
=(d*)/{(d)* (see Fig. 18 for a typical case).

After the ligament has detached from the liquid bulk and
during its rearrangement phase while it is still connected (im-
ages A and B in Fig. 18), the roughness is fairly constant
(y=1.1). It then increases when the ligament breaks into
droplets. The order of the gamma distribution v=1/(y—1)
=10 predicted during the initial phase is in agreement with
the one deduced from the shape of the droplet size distribu-
tion after break-up (v=28.1 for the same conditions, as
shown in Fig. 15). The expected evolution of § with »=10
gives the general decreasing trend as well. The surface is
decreasing faster at the moment of the droplet separation
(image C). Then the surface tends to a final constant value
(image D).

V. CONCLUSION

The experimental study we have conducted with low vis-
cosity liquids shows that a liquid ligament stretched out of a
free surface displays two types of behaviors. For a slow ex-
tension (€é7,<<1) it contracts as a bridge, while for a fast
extension (éf,>1) it is stretched as a cylindrical ligament
whose volume is conserved.

The ligament breaks up on a time 7, based on the diam-
eter of the tube, after the beginning of the extension, what-
ever the stretching rate is. For large stretching rates, the
pinch-off is first located on the liquid connections to the tube
or the reservoir, and not on the cylindrical ligament. The
ultimate break-up of the ligament produces large distribu-
tions of droplet sizes. The broadness of the distribution is a
consequence of the random interaction of the liquid in mo-
tion along the ligament, an interaction of an aggregation
type. This process, in which large blobs grow at the expense
of smaller ones produce blob size distributions stable by self
convolution, namely gamma distributions, which ultimately
set the overall drop size distribution.
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