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Microfluidics with ultrasound-driven bubbles
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Microstreaming from oscillating bubbles is known to induce vigorous vortex flow.
Here we show how to harness the power of bubble streaming in an experiment to
achieve directed transport flow of high velocity, allowing design and manufacture of
microfluidic MEMS devices. By combining oscillating bubbles with solid protrusions
positioned on a patterned substrate, solid beads and lipid vesicles are guided in
desired directions without microchannels. Simultaneously, the flow exerts controlled
localized forces capable of opening and reclosing lipid membranes.

1. Introduction
Driving liquid flow on the micrometer scale in micro-electromechanical systems

(MEMS) is of prime importance for, among others, lab-on-a-chip and micromixing
applications (see Kopp, de Mello & Manz 1998; Beebe et al. 2000; Stroock et al.
2002; Thorsen, Maerkl & Quake 2002; Solomon & Mezić 2003). A variety of driving
forces is available (see Stone & Kim 2001), typically forcing the liquid through
microchannels. Recently, it was shown that the oscillations of microbubbles exposed
to ultrasound efficiently induce flow on small scales (see Marmottant & Hilgenfeldt
2003). The leading-order periodic component of this flow cannot be readily used for
fluid transport. However, viscous forces at the boundary of the bubble together with
the nonlinearity of the Navier–Stokes equations lead to a second-order (in the driving
amplitude) flow which is steady, called acoustic streaming.

The amplitude of streaming velocities results from a balance between nonlinear driv-
ing effects and viscous dissipation. The leading-order oscillatory flow u1(t), of ampli-
tude u1 and angular frequency ω = 2πf , induces a secondary steady streaming flow
us , driven by the nonlinear inertial forcing f s = −ρ〈u1 · ∇u1〉 obtained after averaging
the Navier–Stokes equation, of amplitude fs ∼ ρu2

1/�, where � is the length scale of
the gradient of u1 (Nyborg 1958; Lighthill 1978). Along the boundary of an object,
viscous attenuation is concentrated in the Stokes oscillatory boundary layer of size
δ ∼ (η/ρω)1/2, with η the viscosity and ρ the density. In this boundary layer the
steady streaming force is compensated by viscous forces f v = η∇2us , of amplitude
fv ∼ ηus/δ

2 ∼ ρωus (see Squires & Quake 2005). The typical velocity scale of the
streaming is therefore us = u2

1/ω� near a boundary.
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Figure 1. Bubbles in isolated pits on a PDMS substrate, in slightly oversaturated water.
(a) Side view showing the cylindrical pit below the surface of the transparent substrate.
Almost-hemispherical bubbles like the one shown here can be stabilized given the right degree
of oversaturation (see text). (b–e) Time series at higher oversaturation: just after the filling of
the cuvette (b), after 10 minutes (c), 1 hour (d) and 3.5 hours (e). Pit radius is R = 60 µm, pit
height H =20 µm.

In our experiments, bubbles (of typical radii a ∼ 10–50 µm) are the source of oscil-
latory flow. They are attached to the wall of a small cuvette, in which a piezoelectric
transducer generates a standing ultrasound field on length scales � a (wavelengths
are � 1 cm). The oscillation amplitude A of the bubble wall is always small, so that
ε ≡ A/a � 1. The streamlines of the steady streaming flow then take the shape of
a recirculation vortex torus above the wall and around the bubble, see Marmottant
& Hilgenfeldt (2003) and detailed calculation in Hansen, Marmottant & Hilgenfeldt
(2006). While the recirculation flow is intriguing, it is clearly not directly suitable
for MEMS applications, as there is no control over the direction of the flow or the
magnitude of the substantial forces experienced by suspended objects such as vesicles
or cells (see Marmottant & Hilgenfeldt 2003).

A fortuitous observation recently revealed that the presence of a quartz particle
suspended in the liquid near a bubble breaks the symmetry of the vortex flow (see
Marmottant & Hilgenfeldt 2004), introducing an element of directionality. In this
article, we demonstrate quantitative understanding and application of this effect,
establishing bubble-driven microfluidic devices for novel modes of liquid transport
and force actuation on suspended objects.

2. Experimental set-up
2.1. Bubble size control

To assign the position of the bubbles in experiments, we etch small indentations (‘pits’)
into the hydrophobic substrate. In water, the pits automatically retain air pockets, of
size and shape determined by the dissolved gas content of the liquid as follows. The
pits are cylinders of depth H and radius R, containing a volume Vs = πR2H of air
below the substrate surface (see figure 1a). The interface above the pit takes the shape

of a spherical cap of radius a and volume Vc = Vh(1 ±
√

1 − (R/a)2(1 + R2/2a2)),
where Vh = 2πR3/3 is the volume of a hemispherical cap. The plus sign is valid if the
cap is larger than hemispherical, the minus sign for shallower caps. Vc changes by
gas diffusion into or out of the bubble, depending on the saturation concentration c0

of the gas in the liquid (at ambient pressure p0) and the concentration c∞ far from
the bubble. Using the quasi-steady limit of the diffusion equation in spherical polar
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Figure 2. The relative supersaturation [�c/c0 − �p/p0] ∝ V̇c as a function of relative cap
volume Vc/Vh. The solid and open circles mark the stable and unstable equlibrium volumes,
respectively.

coordinates (see Brennen 1995; Hilgenfeldt, Lohse & Brenner 1996) for the gas con-
centration in the liquid, it is easy to show that the rate of bubble volume change is

V̇c = 2πDac0

(
1 ±

(
1 − R2

a2

)1/2)[
�c

c0

− �p(a)

p0

]
, (2.1)

where D is the gas diffusion coefficient, �c ≡ c∞ − c0 and �p(a) ≡ 2γ /a is the
Laplace–Young pressure at surface tension γ .

When the water is supersaturated, �c/c0 > 0 and the bubble grows unless a is small
enough for �p(a) to counteract the growth. Figure 2 shows the quantity in square
brackets in (2.1) as a function of Vc/Vh. If �p(R)/p0 >�c/c0, two equilibrium points
(zeros of V̇c) appear, of which that with the smaller volume is stable. A bubble with a
less than hemispherical cap can thus persist indefinitely in a microfluidic flow device.

In experiments, we adjust the bubble size by mixing room-temperature saturated
water with a fraction φs of water that was saturated at refrigerator temperatures
(typically 8◦C). As the saturation concentration of air in water is about 25 % higher
in the cold water, mixing at φs ≈ 0.1 results in a mixture with supersaturation �c/c0 ≈
0.025. For air in water (γ ≈ 0.07 kg s−2) and R ≈ 50 µm, this number is just below
�p(R)/p0, and we indeed observe stable, almost hemispherical bubble caps whose
shape and size does not change for hours.

Larger, more than hemispherical bubbles can also be used in experiments, as long
as the time scale over which Vc changes is long compared to the microfluidics time
scales. See figure 1(b–e) for a bubble in water of higher supersaturation growing over
the course of a few hours.

2.2. Substrate layout and manufacture

Instead of the floating particle observed in Marmottant & Hilgenfeldt (2004), whose
position cannot be assigned independently, we manufacture small solid protrusions
on the substrate (‘bumps’) close to the pits in order to break the flow symmetry.
We manufacture arrays of pits and bumps (which use call ‘doublets’) (figure 3a)
in a silicon master substrate (figure 3b) by reactive ion-etching (see de Boer et al.
2002), and replicate the pattern in PDMS (poly-dimethylsiloxane, Dow Corning)
see figure 4. The microfluidic flow is observed through an inverted microscope by
video-rate or high-speed photography. Images are taken through the bottom wall or
through a sidewall of the cuvette. Our doublet arrays feature pits with radii between
15 and 50 µm, combined with cylindrical bumps of abump 
 60 µm radius and 30 µm
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Figure 3. (a) Substrate design with linear and circular arrays of pit/bump doublets on a
substrate of 7 × 14 mm size. (b) Electron micrograph of an etched cylindrical protrusion and
adjacent hole in silicon.

Figure 4. Side view after exposing the PDMS substrate to water. Microbubbles have grown
in the pits, forming doublets of bubbles and bumps. To model acoustic streaming, bumps are
replaced with spheres of effective radius ap , located at a distance Lp from the bubble. The
centres of a bubble and bump are at a height of hb and hp above the substrate, respectively.

height. The distance between the centres of a pit and bump within one doublet is
Lbump 
 95 µm, that between successive doublets is � 
 500 µm.

The driving ultrasound frequency f ∼ 20–200 kHz was usually chosen to be resonant
with the bubble size. The ultrasound driving amplitude at the location of the bubbles
is quite small, resulting in linear bubble oscillations (ε � 0.05, from which we infer
ultrasound peak pressures � 0.05 bar via the linearized Rayleigh–Plesset equation
(see Brennen 1995). No cavitation was observed anywhere in the cuvette, although
vigorous streaming transport flow was induced.

3. Transport
A bump next to a bubble directs liquid towards and beyond this protusion, in the

direction of the vector pointing from the bubble towards the bump. Figure 5 shows
that fluorescent tracer beads (radius 1 µm) are indeed transported in the streaming
flow induced around the bubble/bump combinations. Each doublet in a linear array
‘forwards’ the beads to the neighbouring doublet downstream.

We find that the trajectories can be relatively direct and unidirectional (figure 5)
or more complex, with several bounces off the bubbles (figure 6a), even though the
doublet geometry (a, Lbump , �) is the same. We show below how to understand and
quantify these flow differences.

By excising single arrays and orienting them randomly, we verified that the cuvette
geometry does not bias the transport direction: transport always occurs along the
line of doublets. Likewise, the ‘storage ring’ on the right of the substrate in figure 3(a)
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Figure 5. Side view of three bubble/bump doublets (i), (ii), (iii) in experiment when bubbles
are vibrating in response to ultrasound, with long-time exposure showing the transport of
fluorescent beads in the indicated direction (bubble radius a =30 µm). Trajectories in the plane
perdicular to the wall are visible.

Figure 6. (a) Top view of a streak image of a fluorescent bead around a single doublet with
a 
 30 µm. The bead streak (arrows) appears the wider the farther it is out of focus, above the
substrate plane. (b) Trajectory with characteristic bounces reproduced by theory calculations
(line). Bubble and bump singularities are positioned at (0, a) and (2a, a/2) in the (x, z)-plane,
respectively. Computational parameters are s = 0.11 and �p = 30 µm.

attracts vesicles from the bulk liquid and transports them along the ring. In all
cases, the transport occurs in the direction given by the position of a bubble’s closest
neighbouring bump.

A recent theory (see Marmottant & Hilgenfeldt 2004) postulated transport flow
as the combination of two kinds of acoustic streaming: the steady flow around the
oscillating bubble itself, and the steady flow induced by the bubble around another
object in the flow. The latter is due to the periodic motion of liquid driven over the
object by the oscillating bubble, again resulting in a second-order steady streaming
flow. This flow field has been computed analytically when the object is a solid sphere by
Amin & Riley (1990) and described using Stokes flow singularity theory (see
Blake & Chwang 1974; Marmottant & Hilgenfeldt 2003), which is applicable because
the Reynolds number of the steady flow is small (see Lighthill 1978).

The relative amplitude of these two streaming flows can be estimated from the
simple scaling arguments developed in the introduction. Around the bubble, the oscil-
latory amplitude is u1,b ∼ εaω and the gradient length scale is �b = a, giving a streaming
velocity us,b ∼ u2

1,b/ω�b ∼ ε2aω. We now introduce the characteristic streaming velocity

us = ε2aω. At the position of the solid particle (i.e. the bump), the primary monopole
oscillatory flow (decaying as the square of distance) has amplitude u1,p ∼ u1,b(a/Lp)2,
where Lp is the distance between the centres of a bubble and particle. The streaming



114 P. Marmottant, J. P. Raven, H. Gardeniers, J. G. Bomer and S. Hilgenfeldt

–5 0 5

0

2

4

6

0

2

4

6

x/a x/a x/a

z/
a

(a) (b) (c)

+

–5 0 5

–10 0 10 20 3

0

5

10

z/
a

–10 0 10 20 3
0

5

10

y/
a

=

Figure 7. (a) Side view (x, z-plane) of the steady streaming flow field around a bubble of
radius a adsorbed in a pit at a wall, computed from singularity theory. The bubble centre is at
(xb, hb) = (0, a/4). (b) Leading-order flow field of streaming around a solid sphere, modelling
the bump, located at (xp, hp) = (2a, a/2). (c) Adding (a) and (b) results in doublet streaming
trajectories, shown in side and bottom view. Here, s = 0.05 and �/a = 15 (see text).

flow at the position of the particle then has a magnitude of about u2
1,b(a/Lp)4/(ωa).

However, if the exciting bubble is far away (Lp → ∞), there can be no net transport
flow, as the induced flow must be symmetric around the particle. The asymmetry of the
streaming flow only appears to first order in ap/Lp , where ap is the extent of the bump
(here an equivalent spherical radius, see figure 4). Therefore, the order of magnitude
of the directional flow speed becomes us,p ∼ u2

1,b/(a/Lp)4/(ωa)ap/Lp ∼ usa
4ap/L5

p , a
result which will be made more quantitative below.

The shape of steady flow created by the bubble oscillation by itself is described by a
superposition of singularities at the bubble centre, where the leading-order singularity
can be described by either a fixed point force or a fixed dipole directed perpendicular
to and away from the wall (see figure 7a). In the present case the bubble is a portion
of a sphere only, and we position the far-field singularity so as to cancel out the
flow field at the upper pole of the bubble, in order to comply approximately with
the boundary conditions at the bubble wall (for instance the singularity position is
hb/a 
 0.25 when the bubble centre is on the wall). The streaming flow field around
a bubble near a wall can be approximately represented by

u
(b)
i = ussin(�φ)

[
1
2
SW

iz (rb/a) − 1
4
MD,W

iz (rb/a) − 1
2
MH,W

iz (rb/a)
]
, (3.1)

where us = ε2aω is the streaming velocity scale of a bubble oscillating with angular
frequency ω and amplitude εa. �φ is the phase shift between the radial and
translational oscillations of the bubble (Marmottant et al. 2006). SW

ij , MD,W
ij and

MH,W
ij are respectively non-dimensional Green’s functions of a point force, a dipole

(Pozrikidis 1992), and a projection of hexadecapole singularities placed at the bubble
centre (Longuet-Higgins 1998), all taking into account the presence of a wall.
Coordinates are relative to the bubble centre xb, introducing rb = x − xb. For more
details and a quantitative derivation of the flow field around a hemispherical bubble
attached to a wall see Hansen et al. (2006).

For the streaming around a solid sphere, we use the leading-order term from the
exact infinite series derived by Amin & Riley (1990), i.e. a point force directed parallel
to the wall (arrow in figure 7b):

u
(p)
i =

3

8
us

apa4

L5
p

D4

(D2 − 1)2
SW

ix (rp/a), (3.2)
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where Lp is the distance between the centres of a bubble and particle and ap the
radius of the solid particle (assumed to be spherical). The distance parameter is
D = Lp/ap , and SW

ix is the flow generated by a unit point force parallel to the wall,
with coordinates now relative to the particle position, rp = x − xp . Note that this
quantitative result reproduces the dependences on distance and particle size obtained
from the estimate above.

The streaming flow around a bubble next to a solid object is the sum of these two
low-Reynolds-number flows. In a first approximation we neglect the modifications to
both flows resulting from the presence of the other object’s boundary. The singularities
are sufficiently far apart – the velocity fields decay rapidly with distance – to warrant
this simplification. The finite extent of the bump is also neglected, and we therefore
expect the modelling to be correct for the far field away from the particle.

The resulting streamlines (see an example in figure 7c) display all the characteristics
of the experimental trajectories: a number of bounces off the bubble (reminiscent
of the steady recirculation around a single bubble) and a preferred overall transport
direction. The prominence of both features depends on the relative strength of the
two streaming flows, which we quantify now.

Taking into account prefactors from the rigorous theory for vibrating bubbles
and for solid spheres of radius ap (see equations (3.1) and (3.2)), we find that the
relative strength of particle and bubble near-field streaming flows us,p/us,b ≡ s is given
by

s =
3

8

apa4

L5
p

D4

(D2 − 1)2
2

sin(�φ)
. (3.3)

For larger distances from the doublet, far-field effects become significant, which
depend crucially on the standoff distance hb of the bubble from the wall (see Pozrikidis
1992; Marmottant & Hilgenfeldt 2004). Depending on whether a bubble protrudes
more or less from its pit, hb is larger or smaller. The overall transport flow is therefore
characterized by s and a second, independent parameter hb/a.

The height of the cylindrical bumps used in the experiments varies most strongly
near their edge over a length scale comparable with the bump height (figure 4), i.e.
the gradient length scale is �p 
 30 µm. The streaming around the bump is therefore
estimated by replacing it with a sphere of radius ap = �p located on the bump
edge closest to the bubble (where the induced streaming is strongest), at a distance
Lp = Lbump − (abump −�p), see figure 4. The doublets in both figures 6(b) and figure 8(a)
(the latter highlights one trajectory from figure 5) are thus characterized by the
same ap and Lp , resulting in equal s 
 0.11. Consistent with the observation that the
bubbles protrude more from the pits in figure 6(b) than in figure 8(a), the former is
modelled with larger hb/a, which indeed captures the differences in trajectory shape
between the two cases. The agreement is not exact, as the details of doublet flow are
sensitive to initial conditions, in particular when the bubble component is dominant,
as in figure 6(b). The weaker bubble streaming (because of smaller hb/a) leads to
more effective directional transport with fewer bounces off the bubbles in figure 8,
where measured transport velocities exceed 1mm s−1.

With this theoretical understanding, the direction, speed, and transport strength of
the flow can be mastered by changes in substrate patterning and manufacture – a
necessary condition for working MEMS devices based on bubble streaming. We now
show that the shear forces experienced by objects in the flow can also be controlled
and tailored to a range of applications.
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Figure 8. (a) Transport trajectories of fluorescent particles (side view) through a doublet array,
along with trajectories computed from theory reproducing the observed behavior (continuous
lines, side view). The experimental parameters were a ≈ 30 µm, Lbump =95 µm, �= 500 µm;
the computations were performed with s =0.11, �/a =16, Lp/a = 2, hb/a =0.5, hp/a = 0.5.
(b) Computed Frobenius norm G of the rate-of-strain tensor Gij along the trajectory in
(a), as a function of distance l. A particle on the trajectory experiences a local maximum
of stress at points (i), (ii) (closest approach to the bubble) and (iii) (closest approach to the
particle). (c) Contour map of G in the (x, z)-plane containing bubble and particle centres.

4. Shear forces
When transported objects abruptly bounce off the doublets, they are exposed to

large shear. From the theoretical velocity field ui , the rate-of-strain tensor Gij = (∂jui+
∂iuj )/2 can be evaluated to quantify shear in the flow. Figure 8(b) shows that the

Frobenius norm G =
√

GijGji has pronounced local maxima at every bounce. The
largest strain rate is encountered near the bump, which therefore introduces a well-
defined focus for the application of shear stresses on transported objects (see figure 8c).
Replacing the tracer beads by giant unilamellar lipid vesicles (GUVs, made of di-
oleoyl-phosphatidylcholine and manufactured by electroformation (see Marmottant
& Hilgenfeldt 2003) with radii between 10 and 100 µm allows direct observation of
the effects of the shear. Figure 9 shows that GUVs rupture close to the bump of a
doublet, as expected.

In the vortex streaming flow of single bubbles rupture invariably results in complete
lysis of the vesicle (see Marmottant & Hilgenfeldt 2003). In a doublet flow with strong
enough transport component, however, the vesicle is carried to the region of smaller
shear between doublets, where the membrane reseals (figure 9c). Some interior vesicle
material is expelled. In a device using whole cells, such a process could achieve
transfection of drugs or plasmids into the cells (see Miller & Quddus 2000; Shi
et al. 2002). Only a multiple-doublet set-up with the correct parameters allows this
localization of shear stress in space and time, and the transient poration of membranes.

The stress exerted in a liquid of viscosity η on a vesicle of radius R is σ ∼ ηRG,
and the resulting force (on a vesicle circumference) is F ∼ 2πRσ . With G ∼ ε2ω (cf.
figure 8b) and experimental values as in figure 9 (R = 25 µm, f = 50 kHz, η = 1.3 cP,
ε 
 0.05), a vesicle can easily experience F =10 nN on a trajectory close to the bump
singularity. Even the mechanically toughest cells could thus be probed or porated ‘on
the fly’ in a cytometry or biomedical lab-on-a-chip application. As the velocity scale
of the bubble streaming flow is u0,b = ε2aω and the resonance frequency of a bubble
(see Brennen 1995) is proportional to 1/a, u0,b is independent of bubble size at equal
ε. Further miniaturization of doublets will therefore allow more efficient devices.
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Figure 9. Image sequence of vesicle transport between two doublets (very low-amplitude
ultrasound is used to slow the process down, ultrasound frequency f = 48 kHz). A vesicle
of radius R 
 25 µm is attracted by the first doublet (a, time 0 s) and ruptured as it passes
the bump (b, 0.52 s). When transported towards the following doublet, the membrane reseals
(c, 0.88 s).

5. Conclusion
Bubble-induced microstreaming flow is very different from previous methods where

bubbles have been used as pistons undergoing large volume changes to pump liquid
(see Yuan & Prosperetti 1999) or operate valves and switches (see Jackel, Johnson &
Tomlinson 1990; Papavasiliou, Pisano & Liepmann 2001). The high efficiency of
bubble streaming (see Nyborg 1958) and the directional control distinguish the present
method from streaming off vibrated solids (see Lutz, Chen & Schwartz 2003). The
low driving amplitudes of ultrasound avoid any substantial heating of the working
fluid, in contrast to streaming induced in the bulk of the liquid via the dissipative
‘quartz wind’ effect (see Lighthill 1978). Microfluidic transport is accomplished here
without pressure gradients and without microchannels, eliminating precautions against
clogging of channels in two-phase applications. The thorough understanding of the
process through Stokes singularity theory allows direct design of microfluidic MEMS
for transport, storage, guidance, and other tasks: the substrates presented here were
designed on the computer and performed just as predicted. As each bubble on the
substrate is a micron-scale actuator driven by the cm-scale ultrasonic field, a large
number of bubble devices can be driven simultaneously. This enables a high degree
of parallelization and microfluidics with high throughput.

We are indebted to Detlef Lohse and Albert van den Berg for their support of this
work, and to Rustem Ismagilov for advice on substrate manufacture. We thank Bud
Homsy, Igor Mezić, and Harry Swinney for inspiring discussions. This work benefited
from fruitful interaction with J.-C. Tsai. The Dutch Foundation for Fundamental
Materials Research (FOM) is acknowledged for financial support within the program
‘Physics for Technology’.
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