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Abstract We report microscopic observations of the
primary flow oscillation of an acoustically driven bub-
ble in contact with a wall, captured with the ultra high-
speed camera Brandaris 128 (Chin et al. 2003). The
driving frequency is up to 200 kHz, and the imaging
frequency is up to 25 MHz. The details of the bubble
motion during an ultrasound cycle are thus resolved,
showing a combination of two modes of oscillations: a
radius oscillation and a translation oscillation, perpen-
dicular to the wall. This motion is interpreted using the
theory of acoustic images to account for the presence of
the wall. We conclude that the bubble is subjected to a
periodic succession of attractive and repulsive forces,
exerted by its own image. Fast-framing recordings of a
tracer particle embedded in the liquid around the par-
ticle are performed. They fully resolve the acoustic
streaming flow induced by the bubble oscillations. This
non-linear secondary flow appears as a tiny drift of the
particle position cycle after cycle, on top of the primary
back and forth oscillation. The high oscillation fre-
quency accounts for a fast average particle velocity,
with characteristic timescales in the millisecond range at
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the lengthscale of the bubble. The features of the
bubble motion being resolved, we can apply the
acoustic streaming theory near a wall, which provides
predictions in agreement with the observed streaming
velocity.

1 Introduction

Looking in a mirror, Narcissus was irresistibly attracted
by his image, according to Greek mythology. In this
article, we will see that a bubble oscillating in liquid on a
wall displays an attraction as well, creating an oscilla-
tory translating motion of the bubble.

The interest in bubble oscillations in the vicinity of a
wall has been raised by the use of micrometric bubbles as
contrast agents for ultrasound echography (Klibanov
2002). In addition to an improvement in the quality of
images, sonoporation treatment—that is the acoustic
permeabilization of lipidic membranes—is strongly en-
hanced by the presence of microbubbles near cell walls
(Tachibana et al. 1999; Miller and Quddus 2000; Ward
et al. 2000). This provides a new avenue for localized drug
delivery and gene transfer into cells using microbubbles
and focused ultrasound. Close microscopic observations
revealed strong streaming currents around microbubbles
in contact with a wall (Marmottant and Hilgenfeldt
2003), with large velocity gradients leading to the rupture
of the membranes of lipid vesicles. These observations
provide a possible sonoporation mechanism.

Acoustic streaming, a secondary non-linear effect, is
at the origin of the steady flow around the bubble. In-
deed, secondary steady streamlines were theoretically
predicted near a wall (Marmottant and Hilgenfeldt
2003) assuming a combination of primary oscillations: a
volume oscillation together with an oscillation of the
center of mass perpendicular to the wall, extending the
calculations of Longuet-Higgins (1998) for a bubble in
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bulk. The translation may be driven by the fluctuating
buoyancy force for a bubble in the bulk (Longuet-Hig-
gins 1997), while the cause of the translation near a
boundary is not documented. Although not directly
observed, a phase shift between the two kinds of oscil-
lations was theoretically found to be necessary to drive
the microstreaming.

The purpose of this study is to image the primary
bubble oscillation at the ultrasound frequency, as well as
the primary motion of the surrounding fluid. We also
propose a theoretical description to account for the
primary oscillations and the non-zero phase shift.

2 Methods
2.1 Acoustic excitation of the microbubble

An air bubble (10-100 pm in radius) is fixed by capil-
larity to the wall of a quartz cuvette (Hellma, Germany,
10 mmx10 mmx45 mm). It is introduced by injecting air
in the cuvette with a syringe (see Fig. 1). Mixtures of
water and glycerol allow to increase the liquid viscosity
compared to that of pure water, with a kinematic vis-
cosity of up to 6.8 times that of water.

A piezo-electric transducer (1 mm thick; PIC 151
ceramic from Physik Instrumente, Germany) glued to
the wall generates ultrasonic vibrations (20-200 kHz)
upon excitation. The excitation amplitude remains
constant, resulting in a standing ultrasound field in the
liquid inside the cuvette, with millimetric wavelengths
much larger than the bubble size. The typical sound
amplitude, inferred from the measured bubble vibration
amplitude, is P,.<0.1 bar.

Side view and bottom views of the bubble through
the quartz are obtained using a bright field microscope
(Olympus modular BX2, Japan).

2.2 Image acquisition with the ultrafast-framing
camera Brandaris 128

In order to fully resolve the bubble oscillation with a
camera, the acquisition rate must be higher than the
ultrasound frequency (the latter being 200 kHz at
maximum). We used for that purpose the fast-framing

piezo-
transducer
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Fig. 1 The air microbubble is sticking on the wall of a cuvette due
to capillarity. A piezo-transducer generates a standing ultrasound
wavefield within the cuvette, exciting bubble vibrations
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Fig. 2 Photograph of the fast-framing camera Brandaris 128 (Chin
et al. 2003). The image from the microscope is successively
projected on 128 CCD cameras by the rotating mirror

camera Brandaris 128 that records a sequence of 128
images with up to 25 million frames per second. The
description of the camera, detailed in Chin et al.
(2003), is summarized here, following the path of light
from the beginning: a short arc xenon flash lamp
(EG&G FX-1163  Perkin-Elmer  Optoelectronics,
Salem, MA, USA) produces a flash of a few micro-
second in duration to illuminate the bubble scene
during the recording, the upright microscope sends a
40x magnified image to the camera (see Fig. 2). The
image is directed by relay lenses on a rotating mirror
driven by a turbine, which redirects the image on the
array of CCD cameras, arranged along an arc. The
successive illumination of the CCD provides a
sequence of 128 static images. The interframe time
depends on the adjustable rotation rate of the mirror,
allowing the maximum of 25 million frames per
second.

2.3 Image analysis

The image sequence of the oscillating bubble is auto-
matically analyzed to measure the bubble volume and
the position of the bubble center (see an example, Fig. 3,
left). For that purpose, a circle is superimposed to the
image contour, assuming that the bubble remains
spherical.

Since recorded images show only a part of the cir-
cular boundary, we developed a specific algorithm to
monitor the boundary center and radius automatically.
The algorithm proceeds as follows:

e A gradient filter is applied to enhance the edges (a
Sobel filter, see Fig. 3, right).

e The image is convoluted with a series of computer-
generated images of a circle, with a range of radii
(using Fast Fourier Transforms).

e The measured bubble radius is the one of the circle
that provides the highest correlation. The position of
the peak in the correlation image provides the center
of the bubble.



Fig. 3 Air microbubble, 20 pm
in radius, side view (left). The
reflection on the glass provides
the optical image. Contour and
center recognition on the
gradient image (right)
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optical image in the glass wall

3 Bubble translation oscillation

Looking from the side, tangentially to the glass wall
(see Fig. 3, left), the elevation of the center of mass z
and the radius of the bubble R are measured simulta-
neously. The analysis of a fast-framing sequence re-
veals that the center of mass translates away and
towards the wall during the volume oscillation, around
an average position zy (see a cycle, Fig. 4). While the
translation and radius oscillation occur at the same
frequency, they are not in phase. The examination of
individual images shows that the bubble shape remains
quasi spherical during the oscillation (low surface
undulation modes).

amplitude (um)

t (us)

Fig. 4 Measurements from the images (recorded at the rate of
1,500,000 frames per second): the bubble radius R and the center of
mass z are out of phase (4¢=—13°), and oscillate with the
ultrasound frequency of 191 kHz

We perform an harmonic fit of the measured oscil-
lations with
R(t) = a(1 + € exp (iwt)),
z(t) = zo + aeexp (iwt — 1Ap),

(1)
(2)

using the complex notation, with @ the bubble radius at
rest, ¢ the normalized amplitude of the radius oscilla-
tion, ¢ the amplitude of the translation oscillation,
o =2 f the angular pulsation frequency, 4¢ the phase
shift between the oscillation. It is important to note here
that we follow the notation from Longuet-Higgins
(1998), except for the definition of the phase shift A¢
that differs by an angle of = with the phase shift ¢ de-
fined in that reference, with A¢ = ¢—mn.

Considering the three cycles of best illumination, we
find that the bubble (a=20 pm) oscillates at the driving
acoustic frequency (f=191 kHz). The oscillation
amplitude is ¢ =0.077, and the translation amplitude is
£=0.35¢". In spite of the limited accuracy of the mea-
surement, a clear negative phase shift is measured, 4¢
= —13° (with a standard deviation of 7°), meaning that
the translation precedes the volume oscillation.

Several hypotheses for the origin of the force driving
the translation were initially considered by the authors,
and we review them here: (1) A pinned contact, together
with a fixed contact angle, could geometrically force an
elevation increase during the inflation of the spherical
bubble; however, this would not trigger any phase shift.
(2) Ellipsoidal surface deformations around the spheri-
cal shape, driven by the surface tension force restoring
the contact angle are not observed in experiments. (3)
When taking a moving contact line into account an
estimate shows no significant phase lag either, even in
the case of stick—slip discontinuities (calculations not
presented here). More generally, all capillary pressures
due to the distortion of the interface are of order o¢’/a,
according to the Laplace law, with ¢ the surface tension,
and negligible compared to inertial pressures which are
according to Bernoulli’s law of order pj(aw)?, with p, the
density of the liquid: the ratio of the inertial to capillary
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pressures defines a Weber number that is large,
We=pia’w’e jo=15>1.

The buoyancy force due to hydrostatic pressure
gradients, candidate for the driving, is negligible for
micrometric bubbles. Calculations show that inhomo-
geneities of the standing acoustic pressure field, creating
gradients along the acoustic wavelength, much larger
than the bubble size, do not contribute significantly
either.

By contrast, the presence of the wall itself leads to a
significant alternating pressure gradient. The pressure
field is obtained from the flow field using the Navier—
Stokes equation. The bubble wall velocities induced by
the motion at the ultrasound frequency, with transla-
tional velocities of order u;~¢ aw and radial velocities of
order u,~¢& aw, providing two Reynolds numbers: a
translational Reynolds number Re,=R u/v=¢ da*w/v,
and a radial Reynolds number Re,= Ru,/v=¢ a*w/v.
From the previous measurements both Reynolds num-
bers are larger than 1 (Re;=2 and Re,~=6), and we will
use a high Reynolds number formalism as a first
approximation. The pressure can therefore be derived
from the potential flow theory for the primary motion of
the fluid at the ultrasound frequency, neglecting the
viscous effects localized in thin boundary layers at the
walls.

The flow field near the wall can be modeled, in a first
approximation, by replacing the wall by an acoustic
image located symmetrically on the other side of the
wall, at the same position of the optical image seen on the
photographs, in order to satisfy a vanishing normal
velocity at the wall. The interaction of a bubble with its
own image was studied in literature within various
contexts: in particular for the case of non-oscillating
bubbles in translation parallel to a wall (Takemura and
Magnaudet 2003), or in general translation near a wall
(Magnaudet 2003). The phenomenon of acoustic
streamers also triggered investigation on the interaction
of oscillating bubble pairs, similar to the bubble-image
pair when radii are equal (Pelekasis et al. 2004).

We have seen that acoustic forces from the pressure
gradients of the ultrasound field in the cuvette, called
primary Bjerknes forces (Leighton 1994; Brennen 1995),
can be safely neglected. On the other hand, the oscilla-
tion of the acoustic image creates an alternating pressure
gradient on the real bubble, resulting in an alternating
secondary Bjerknes force (Leighton 1994; Brennen
1995). The force scales like Fg~—Vp((dp,)/(dr)), where
Vg is the bubble volume and p» is the emitted oscillating
pressure from the acoustic image. At a distance r from
the acoustic image this pressure scales like p, ~ lean /r,
resulting in a secondary Bjerknes force F ~ Vap,R*R/1?,
directed away from the wall and proportional to the
bubble wall acceleration. The bubble is therefore alter-
nately attracted and repelled by its own acoustic image.
Attraction occurs during the inward acceleration of the
bubble wall, while repulsion occurs during the outward
acceleration (see illustration, Fig. 5).

'd R

outward acceleration
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Fig. 5 Oscillating bubble at the end of the contraction phase (lef?),
and at the end of expansion phase (right). The secondary Bjerknes
force Fy by the acoustic image of the bubble produces alternately
an attraction and a repulsion

According to van der Geld (2002) the velocity po-
tential of an oscillating bubble near a wall can be ex-
pressed analytically as a sum of multipoles whose
amplitude is determined by boundary conditions. The
total kinetic energy is derived from the velocity poten-
tial, and the forces on the bubble are obtained from the
Lagrange equation for the kinetic energy (the expression
of the pressure field is therefore not needed within this
method). At first order in &'« [linearizing equations
from van der Geld (2002) for small vibration ampli-
tudes], and considering a bubble far from the wall [R/
2«1, keeping terms up to (R/z)?], the following inertial
force components on the z axis are obtained: the added
mass force

v = —Cwmp VBZ,

due to the acceleration of the fluid, with the added mass
coefficient Cy;=1/2; and the secondary Bjerknes acous-
tic force

F—3R21 VeR
B=g\z) 2/t

(3)

Dissipative forces are the translation drag force and
the expansion drag force, the latter being caused by the
vicinity of the image bubble. Still following the results by
van der Geld (2002) expressed for small vibration
amplitudes and up to order (R/z)?, we find that the drag
force writes

(4)

the drag coefficient being Cp=24/Re, at large Re, num-
ber (see the review of Magnaudet and Eames 2000).
Magnaudet and Legendre (1998) showed that expression
4 holds when at least one of the translation and radial
Reynolds numbers is large, that is for Re.>1 or Re. > 1.
For the case where both Reynolds number are small,
Re<1 and Re <1, the drag force writes

1
b= —CDEplnRzzz = —127pRz,



Fp = —4npvRz

— 8 / exp (%) erfc<\/%) Ri(1) dr, (5)

0

the second term being the history force, here with a
linearized expression at small vibration amplitudes. In
the present situation both Reynolds numbers are not in
the small number range: in our model calculations we
will therefore employ the high Reynolds number
expression 4, keeping in mind that we are in an inter-
mediate region where low Reynolds number effects start
to play a role.

The other dissipative force is the expansion drag force

1

R\’ :
fg=—2 <> 127tpvRR.
2\z

For bubbles close to the wall, the coefficients of all
these forces slightly increase when z/R=1 (all with the
same factor, within a few % when z/R=1.05), but are
not valid when the bubble is just above or in contact
with the wall, as in the experiment. Exact calculations
were presented for bubbles in contact with the wall (van
der Geld 2004), but only for the inertial forces Fy; and
Fpg: evaluating the dissipation in the thin films between
the bubbles or within the corners near the contact line
would require a complex description of the interplay
between surface deformations and friction forces. Note
that the translation and expansion drag forces Fp and
Fg are likely to diminish at contact, when the liquid film
between the bubbles disappears. We will therefore use
the far field expression as a first order approximation,
neglecting the effects of the contact line. From Newton’s
second law Fy; + Fg+ Fp+ Fg =0, we obtain

18v, 3[R\, (R\9v.

The response of the bubble elevation z to oscillations
of the secondary Bjerknes force is formally analogous to
the forced response of a dashpot. The first term on the
right-hand side of Eq. 6 is a forcing introduced by the
presence of the wall.

As a parenthesis, note that the radial dynamics is also
affected by the acoustic image bubble. In linear
approximation R — Ry < Ry (i.e., for P,(t) < Py), the
standard Rayleigh—Plesset equation, describing the ra-
dius response as a function of the acoustic pressure,
becomes near a wall

1R\, 4v. Py—p(R)—%
l+-= R+ R+ —F—F
(152 s i 20

_ Pac(t) 1 R 2.. 3 R 2\)_
=R +§<;)”z(;> bl )

using the far-field expression from van der Geld (2002)
up to @((R/z)z), with P, the ambient pressure, py(R)
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the gas pressure in the bubble, and P,.(¢) the applied
acoustic pressure. The radius response is analogous to
the forced response of an harmonic oscillator. We
infer from the prefactor of the first term that the
“mass” of the harmonic oscillator is increased by the
presence of the wall, decreasing the resonance
frequency. The acoustic pressure provides the forcing,
and the oscillator is weakly coupled to the transla-
tional motion through the last two terms. We cannot
measure the local acoustic pressure in the experiment
and we will not elaborate further on the radial re-
sponse to the acoustic pressure and just conclude that
the acoustic image modifies the resonance properties of
the bubble.

Inserting harmonic oscillations of R and z as de-
scribed by Egs. 1 and 2 in the translational equation 6,
we obtain the following phase shift and amplitude re-
sponse for the translation with respect to the radius
oscillation:

18v 12v
A¢ ~ — arctan <W) — arctan (W) , (8)

The translation is indeed in advance with respect to ra-
dius oscillations (negative phase shift). The translation
drag force accounts for the majority of the phase shift,
and the expansion drag force for a small part of it. The
phase shift is an increasing function of the viscosity of
the liquid, and all the more pronounced for small bub-
bles. The amplitude of translation ¢ decays rapidly for
increasing bubble to wall distances.

Predictions with the conditions of the experiment
(v=6.8x10"°m?/s, f=191 kHz, R=19.6 um, R/z=1)
provide A¢=—25° overestimating the experimental
measurement (—13°+£7°). Note that using the low
Reynolds number approximation (equation 5, and using
in calculations its Fourier transform that can be found
in Yang and Leal 1991), instead of the large Reynolds
number approximation (Eq. 4), provides A¢=—22°. We
conclude that we are in an intermediate range where
low- and high-Reynolds predictions converge. The pre-
dicted oscillation amplitude is ¢/¢’=0.72, also higher
than measured values (0.35). These predictions show the
limits of the far-field approximation, especially for the
secondary Bjerknes force Fg which mainly determines
the amplitude of translation.

Note that at first order the secondary Bjerknes forces
is alternately attractive and repulsive. However, aver-
aging Eq. 3 over time gives a second order force
(Fg)=—(9/16)p,Vge*aw?*. Eventually, on an average, the
bubble is attracted by its own image! This attractive
effect is evidenced in experiments: the center of mass
moves closer to the wall when the sound amplitude is
increased. It is consistent with the prediction that two
bubbles in the bulk, oscillating in phase, experience an
attractive secondary Bjerknes force (Leighton 1994). The



152

previous expression is valid only in the far-field limit: the
influence of the near-field interaction on the average
force can be found in Doinikov and Zavtrak (1995). A
detailed calculation of average force including the
influence of viscous effects around clean bubbles was
also presented in Doinikov (2002).

As a conclusion, these observations and the present
theoretical description of the motion validate the
assumption of a phase shift between volumetric and
translational oscillations of a bubble in contact with a
wall, assumption that was necessary to account for the
steady acoustic streaming around bubbles that we study
in the next section.

4 Resolved acoustic streaming

The primary oscillations of the bubble wall drive oscil-
lations of the liquid. In this section we present direct
observations of the liquid motion, using a tracer particle
(here a tiny dust particle, a few micrometers in diame-
ter). The particle is small compared with the bubble size
that provides the characteristic lengthscale of the flow. A
fast-framing image sequence allows following the tracer
particle motion during an ultrasound cycle, together
with the bubble radius (see Fig. 6). Since the view is
along the axis of translation (z), only the radial oscilla-
tion can be captured.

The bubble radius R is measured on the sequence of
images, together with the distance rp of the particle
center to the bubble center projected onto the plane of
view. Superimposed on the oscillation, a tiny drift mo-
tion of the particle is apparent, amounting to about
0.063 um/cycle. Note that here we only measure the
component of motion parallel to the plane (see Fig. 7).
The drift corresponds to a significant translation speed
of about 8.7 mmy/s, covering the bubble radius in about
2 ms.

Average steady-streaming velocities around the
bubble were reported (Marmottant and Hilgenfeldt
2003), but a quantitative prediction of the velocity
magnitudes was not possible, in the absence of detailed
measurements of the primary oscillations of the bubble
and particle, and in particular of the phase shift A¢.
The steady flow was interpreted as acoustic streaming,
a non-linear response of the flow caused by viscous
attenuation effects within the thin oscillatory boundary

it
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Fig. 6 Bubble (20 um in radius) and particle, bottom view
(perpendicular to the glass wall). An agglomerate of particles, too
large to be considered as a tracer is also present in the field of view.
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Fig. 7 Resolved particle distance rp and bubble radius R (data
from image sequence, see Fig. 6). The tracer particle position
exhibits a drift cycle after cycle, resulting in the steady acoustic
streaming

layers that surround the bubble wall. Assuming com-
bined translation and radial oscillations, the charac-
teristic velocity of acoustic streaming is wu,=¢&¢
aw sin A¢, a quadratic non-linear response, expressed
here for small amplitudes of vibration (e<1 and &'<1).
The assumption of combined oscillations is now con-
firmed by the observations reported in the previous
section.

Computation shows that the general case of a steady-
streaming flow near a wall can be described in its far
field as a superposition of flow singularities, including
those of point force and dipole type. The streamlines are
closed loops around stagnation points distributed along
a circle above the bubble, creating a toroidal vortex (see
streamines in Fig. 8). The particle imaged here is there-
fore circulating along one of these orbits. In Fig. 8, we
add lines of constant flow speed (dotted), computed
from the analytical expressions in Marmottant and
Hilgenfeldt (2003), demonstrating that the speed peaks
close to the bubble boundary at values of about u,, and
decays rapidly away from the wall.

From the oscillation amplitude ¢ =0.1 measured
from the perpendicular view, and using the measure-
ments from the side view to estimate ¢/¢’ and sin A¢
(performed at a slightly different frequency), we obtain a

.. ..

A A AN

Images were extracted (one every eight images) from a sequence
recorded at the rate of 3,800,000 frames per second, for an
ultrasound excitation of 140 kHz
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Fig. 8 Side view of the theoretical streamlines around the bubble
(solid lines) and isocontours of the velocity magnitude in units of u
=¢&’ aw sin A (dotted lines)

characteristic streaming velocity u; of 6 mm/s. It pro-
vides a correct order of magnitude when compared with
the tracer velocity component measured directly on the
resolved sequence (8.7 mmy/s), even if we do not know
the direction and exact position of the streamline on
which the tracer is located.

5 Conclusions

We reported fast-framing observations that provide
evidence of an oscillatory translation of the bubble
superimposed on the radius oscillation. We showed that
this strong translation, comparable in magnitude with
the radius oscillation, is caused by the proximity of the
wall, acting like an image bubble. The phase shift be-
tween these oscillations is created by drag forces. The
acoustic streaming of the fluid induced by the bubble
appears as a drift of the tracer particle position in a time-
resolved image sequence.

In conclusion, the adsorbed oscillating bubble acts as
a micron-scale liquid pump propelling liquid with the
characteristic velocity u=¢">(¢/¢")aw sin  Ap, propor-
tional to the square of the vibration amplitude &’. The
efficiency of this pump is the greatest when fixed to the
wall since it is the closest to the wall (maximizing ¢/¢’),
and the efficiency proves to be enhanced in viscous
media, triggering a larger phase shift A¢ between oscil-
lation and translation. Note that this is in contrast to the
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traditional streaming flow scenario, where the streaming
velocity is independent of the value of viscosity.
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