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Abstract. We suggest a scalar model for deformation and flow of an amorphous material such as a foam
or an emulsion. To describe elastic, plastic and viscous behaviours, we use three scalar variables: elastic
deformation, plastic deformation rate and total deformation rate; and three material-specific parameters:
shear modulus, yield deformation and viscosity. We obtain equations valid for different types of deforma-
tions and flows slower than the relaxation rate towards mechanical equilibrium. In particular, they are
valid both in transient or steady flow regimes, even at large elastic deformation. We discuss why viscosity
can be relevant even in this slow shear (often called “quasi-static”) limit. Predictions of the storage and
loss moduli agree with the experimental literature, and explain with simple arguments the non-linear large
amplitude trends.

PACS. 83.60.Df Nonlinear viscoelasticity – 83.60.La Viscoplasticity; yield stress – 83.80.Iz Emulsions and
foams

1 Introduction

Elastic materials deform reversibly [1]; plastic materials
can be sculpted, that is, they can be deformed into a
new shape and keep it [2]; and viscous materials flow [3].
A wide variety of materials display a combination of
these properties, such as elasto-plastic metals and rocks,
visco-elastic polymer solutions or visco-plastic mineral
suspensions [4–6].

Liquid foams, that is gas bubbles separated by liquid
walls, are visco-elasto-plastic [7–9]: they are elastic at low
strain, plastic at high strain and flow under high shear
rate. This is also the case for other concentrated suspen-
sions of deformable objects in a liquid [4,10,11], such as
droplets in emulsions, vesicles suspensions, or red blood
cells in blood.

Despite a large literature on experiments and simula-
tions (see [9] for a review), we lack an unified theoretical
description of foams. There is no consensus yet on a cen-
tral question: what are the physically relevant variables? A
series of statistical models focus on fluctuations and their
correlations [12–16]. Conversely, recent contributions [17–
23] focus on average macroscopic quantities to obtain a
more classical continuous description.

Here we choose to group three macroscopic quantities
which are measurable as averages on microscopical de-
tails [17]: i) Elastic deformation is a state variable [24] re-
versibly stored by the foam’s microstructure, that is, the
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shape of bubbles [25,26]; it determines the elastic contri-
bution to the stress. ii) Plastic deformation results in en-
ergy dissipation analogous to solid friction. iii) Large-scale
velocity gradients are associated with a viscous friction.
Each of the three mechanical behaviors is associated with
a material-specific parameter: elastic modulus, yield de-
formation and viscosity.

For simplicity, we assume here that these parameters
are constant and the equations are linear. We consider here
homogeneous deformation of a material, not depending on
space coordinates. We consider only the magnitude of de-
formation, but not spatial orientation: the material state
variables are all scalars. This represents an incompressible
liquid foam, where the deformation is a pure shear. We as-
sume that this shear is slow enough so that the foam is
always close to mechanical equilibrium, but quick enough
to neglect coarsening such as due to gas diffusion between
bubbles, or bubble coalescence due to soap film breakage.
Although this model is minimal, it is written with enough
generality to enable for extensions to higher dimensions
using tensors (the correspondance with tensors introduces
a factor 1/2, see Sect. 4.3), to higher shear rates, and to
other ingredients such as external forces (to be published).

This paper is organised as follows. Section 2 intro-
duces a visco-elasto-plastic model (Eqs. (3,7)) based on
two scalar variables: the elastic deformation and the (slow)
shear rate (Fig. 3). The rate of plastic deformation is de-
termined by both the applied shear rate, and the current
state of the elastic deformation (or equivalently the elastic
part of the stress) rather than by the total stress [27,28].
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Section 3 presents scalar predictions of creep and oscilla-
tory responses. The storage and loss moduli predicted as
a function of the strain amplitude agree with experimen-
tal data without any adjustable parameters, using only
the three model-independent parameters determined by
experiments (yield point, shear modulus, viscosity). The
agreement becomes very good if we describe the plastic
yielding as a gradual transition spreading between an on-
set value of deformation and a saturation value (Eq. (5)).
Section 4 summarises and discusses our model, and opens
some perspectives.

2 Model

2.1 Kinetics

2.1.1 Elastic and plastic strain

The elastic deformation U is a state variable, that is an
intrinsic property of the foam’s current deformation state.
We note its time derivative dU/dt. Conversely, we use a
dot for the total strain rate ε̇ and the plastic strain rate
ε̇P , emphasising that they are not the time derivative of
a state variable. For instance, the time integral ε =

∫

ε̇ dt
of the velocity gradient is the gradient of displacement
(more generally, for large deformations, it is a function of
the displacement): it is extrinsic and explicitly depends on
the sample’s past history.

The total applied deformation rate is shared between
elastic deformation U and the plastic deformation rate:

ε̇ =
dU

dt
+ ε̇P . (1)

In the particular case of an elastic regime, ε̇P = 0,
the elastic deformation U is equal to the total applied
deformation on the material ε. Thus, in an elastic regime,
no intrinsic definition of U is necessary.

However, as soon as ε̇P 6= 0, the situation changes. U
and ε̇ become independent variables, and ε =

∫

ε̇dt does
not define the elastic deformation. In the extreme example
of a steady flow, dU/dt = 0, then ε̇ = ε̇P : U and ε̇ are no
longer correlated.

These variables are macroscopic: U is related to the
elastic contribution to macroscopic stress and ε̇P to the
irreversibility of the stress versus total strain curve. In
the specific case of foams, they can be traced back to
detailed properties of the bubbles pattern: independent,
intrinsic definition [24] based on geometry (shape of
bubbles [26]) for U ; and topological rearrangements
called “T1 processes” [14,29,30] (using their rate and
orientation [17]) for ε̇P .

2.1.2 Sharing the total strain

The problem now is to express how, in equation (1), ε̇ is
shared between dU/dt and ε̇P . We must write a closure re-
lation between these variables, for instance by expressing

a bc
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ε

Fig. 1. Analog scalar system: an elastic brush whose flexion
is U stick/slipping on wall. We represent several states, for
an imposed oscillatory “painting-like” motion of the handle ε,
from rest position 0: (a) onset of sliding to the right, (b) far-
right position, (c) far-left position.

how ε̇P depends on the current state of elastic deforma-
tion and on the applied deformation rate: ε̇P (U, ε̇). We use
the following three hypotheses leading to equation (2).

First we describe an abrupt transition from elastic
to plastic regime, as could be the case for an ordered
foam [31]. To indicate that T1s appear when the absolute
value of deformation |U | exceeds the yield deformation
UY , we introduce the discontinuous Heaviside function H
(which is zero for negative numbers, and 1 for numbers
greater than or equal to zero). This hypothesis can be re-
laxed in the Section 2.1.3, introducing a more progressive
transition.

Secondly, we account for the hysteresis. Plastic rear-
rangements occur when the deformation rate ε̇ and the
current deformation U have the same sign, and again we
express it using H. Else, the deformation rate results in
elastic unloading, and the deformation gets smaller than
the yield deformation.

Thirdly, we use the fact that, in a slowly sheared mo-
tion, the only relevant time scale to fix the rate of plastic
rearrangements is ε̇.

Eventually, the plasticity equation writes

ε̇P = H(|U | − UY ) H(Uε̇) ε̇. (2)

Equation (2) can be used to close the system of equations.
Injecting it in equation (1) yields an evolution equation of
U as a function of the applied shear rate ε̇:

dU

dt
= ε̇ [1 −H(|U | − UY ) H(Uε̇)] . (3)

In equation (3) UY appears as the stable value for U ,
that is, a fixed point, at least if ε̇ > 0; else, the stable fixed
point is −UY .

To visualise the direction and the amplitude of the
deformation U , we suggest an analogy with the motion of
a brush on a wall (Fig. 1). The handle of the brush moves
with an oscillatory position ε parallel to the wall (analog of
the imposed scalar deformation of the material), while the
displacement of the handle with respect to the brush tip
is U (the analog of the internal elasticity of the material).
The sliding velocity of the contact point is therefore ε̇P

according to equation (1) and is the analog of plasticity
in a material.
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2.1.3 Gradual transition to plasticity

In a disordered foam, for instance with a wide distribution
of bubble sizes, topological rearrangements do not neces-
sarily occur for the same value of deformation.

We therefore distinguish two different yield deforma-
tions. First, a plasticity yield Uy, where deformation ceases
to be reversible, as defined in material sciences. It is the
highest deformation for which there is no T1. It is char-
acteristic of the microstructure, and can even be close to
zero for a very disordered foam.

Second, a saturation yield UY , the saturation value of
elastic deformation at which the material can flow with ar-
bitrary large total deformations (for instance in Bingham
fluids). It is the lowest deformation for which the T1s con-
vert the whole total strain into plastic strain. That is, UY

is the collapse limit at which a material structure cannot
sustain stress.

We interpolate between Uy and UY using a function
h(U) which we call a yield function. It should be a grow-
ing (or at least non-decreasing) function of U for U > 0,
and h(−U) = h(U). Moreover, h(0) = 0, so that h(U) ≥ 0
for all U . Beside that, there is no special requirement on h,
which even does not need to be continuous. Now, Uy is de-
fined as the largest value of U for which h(U) = 0, and UY

as the smallest value of U for which h(U) = 1. They do not
necessarily correspond to any singularity in h. We show in
appendix that the precise shape of h is unimportant: only
Uy and UY determine the material’s behaviour. However
it is useful for theory to derive analytical equations.

The yield function h depends on the material under
consideration, and can in principle be measured experi-
mentally. By definition, h = 0 corresponds to a purely
elastic state where the elastic deformation follows the ap-
plied deformation. Conversely, for h = 1 the plasticity rate
is equal to the deformation rate. Such a smooth transition
from elasticity to plasticity generalises the postulate (2) as

ε̇P = h(U)H(Uε̇) ε̇. (4)

Note that we could in principle smoothen out the remain-
ing Heaviside function too: depending on microscopical
details, it could be conceivable that some T1s appear dur-
ing the unloading. We do not explore this possibility here,
because we seldom observe this effect and it does not seem
to improve significantly the predictions presented below.

Injecting equation (4) into equation (1) we obtain

dU

dt
= ε̇ [1 − h(U)H(Uε̇)] . (5)

Again, the fixed points are U = ±UY according to the
sign of ε̇.

2.2 Dynamics

2.2.1 Slow shear: foam close to equilibrium

In a foam, bubbles can swap neighbours giving rise to
T1 topological rearrangements. A T1 is an infinitely

short event during which the energy is continuous. Thus
it does not dissipate energy by itself, but it brings the
foam to an out-of-equilibrium state. It is thus followed
by a dissipation of energy during the relaxation towards
another equilibrium configuration, with a microscopical
relaxation time τrelax.

The average lifetime of a contact between two bub-
bles is f−1, where f is the average frequency of T1s per
bubble contact. If fτrelax ≪ 1, the foam evolves (it is not
static) but spends most of the time at or very close to
mechanical equilibrium states. Thus Plateau rules of local
mechanical equilibrium [8] are (almost) always satisfied,
up to corrections of order fτrelax.

The frequency f can be determined by various causes
of perturbations, for instance coarsening [8]. In rheology,
it is determined by the plastic deformation rate ε̇P [17].
For dimensional reasons, f is proportional to ε̇P . Since the
plasticity amplitude ε̇P is always smaller than the defor-
mation rate ε̇ (see Eqs. (2) and (4)), the regime close to
equilibrium is obtained in the slow shear limit:

ε̇τrelax ≪ 1. (6)

2.2.2 Contributions to total stress

We now include an additional viscous dissipation from the
global deformation of the network of bubbles. This contri-
bution is not linked to the relaxation of rearrangements,
and does not modify the slow evolution of deformation.

We consider two separate contributions to stress, un-
der the following hypotheses. According to experimental
tests [26], we consider an elastic contribution to the stress
σel = µU proportional to the elastic deformation U , where
µ is the shear elastic modulus. It describes a classical elas-
tic behaviour, with a reversible restoring force.

According to the model proposed by Kraynik and co-
workers [7,32], we consider a viscous contribution to the
stress due to large scale velocity gradients: σvis = ηε̇,
where η is a macroscopic viscosity. It describes a classi-
cal fluid behaviour: the corresponding dissipated power is
quadratic, proportional to ε̇2.

In the spirit of a polymeric model [4], we assume that
the stresses add up (Fig. 2):

σ = σel + σvis

= µU + ηε̇. (7)

The material is characterised by the coefficients η, µ
and UY (and Uy in the case of gradual plasticity). Measur-
ing experimentally, and understanding theoretically the
physical origin of these coefficients, requires specific stud-
ies for each material considered: this is beyond the scope
of the present paper. In principle, they can be rank-four
tensors (anisotropic material). They can even vary with
the material’s state (non-linear material), for instance in
a shear-thinning case.

As opposed to the crossover from elastic to plastic
regimes, which is topological and is visible on images, here
the crossover from the elastic to the fluid regime can be
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Fig. 2. A linear elasto-visco-plastic rheological model.
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Fig. 3. Scalar phase diagram for a slowly sheared foam or an
emulsion. Axes are experimentally measurable [17] local vari-
ables: shear rate ε̇ and elastic deformation U . The crossover
from elastic to plastic is defined as the onset of the first iso-
lated topological rearrangements; it occurs around UY , with
possible precursors around Uy. The yield deformation UY cor-
responds to a macroscopic rate of topological rearrangements.
The crossover from solid to fluid is defined by the equality of
viscous and elastic stresses. The slowly sheared regime pre-
sented here ceases to be valid when ε̇ becomes comparable to
τ−1

relax
, inverse of the microscopical relaxation time.

detected only by measuring forces. It occurs when the vis-
cous contribution to the stress becomes larger than the
elastic one. Figure 3 thus plots the line corresponding to
the crossover: µU = ηε̇.

Defining the macroscopic local Weissenberg number as

WiM ≡
ηε̇

µ
, (8)

the crossover between elastic and fluid regime occurs at
WiM = U .

Upon increasing ε̇ from the plastic regime where U is
close to UY , we predict a crossover from a stress bounded
by a constant value µUY (with a dissipated power lin-
ear in ε̇, see next section) to a stress linear in ηε̇ (with a
dissipated power quadratic in ε̇), characteristic of a vis-
cous friction. The crossover from a plastic regime to a

fluid regime occurs when ηε̇ is equal to µUY , i.e. when
WiM = UY .

Since the plastic deformation is not bound, in the
plastic regime the foam can flow indefinitely. As in
hydrodynamics, the displacement field itself is no longer
relevant. The plastic flow [5,6] and the viscous flow [3]
look the same; their difference is not kinematic but
dynamic: stresses are independent of and proportional to
ε̇, respectively.

2.2.3 Dissipation

The close to equilibrium criterion (Eq. (6)) regards time
scales, and is not a criterion based on the absence or pres-
ence of dissipation. Viscous dissipative effects can indeed
be observed when considering measurements of the loss
modulus at very low amplitude oscillations, and hence at
very slow shear rate (as presented below in Figs. 9–11). In
fact, dissipation is absolutely necessary to relax towards
equilibrium: it damps oscillations and decreases the en-
ergy. Note that a “quasi-static” regime, that is a succes-
sion of equilibrium states, necessarily obeys the equilib-
rium criterion; but it is not sure that the reverse is true.
In fact, reference [33] claims that in the slowly sheared
Couette flow by [34] the velocity profile is determined by
the ratio of velocity-dependent forces (internal viscosity
and external friction on the plates of glass): static simu-
lations are inappropriate.

As already mentioned, a T1 by itself, that is a side
swapping, is an infinitesimally short topological event,
during which the foam energy is continuous: there is no in-
stantaneous dissipation. However, the T1 puts the foam in
an out-of-equilibrium state. During a time τrelax the foam
relaxes to a local energy minimum by dissipating an en-
ergy δE. A smaller microscopic dissipation yields a shorter
relaxation time τrelax, and a larger instantaneous dissi-
pated power, of order Pdiss = δE/τrelax. But the amount
of energy dissipated, δE, is independent of the dissipa-
tion. Thus the dissipated power averaged over a long time
(longer than ε̇−1) is of order

〈Pdiss〉 = fδE ∼ ε̇P δE ∼ ε̇δE. (9)

0 1 2 3
0

1

ε t
.

U
 / 

U
Y

Fig. 4. Schematic impact of individual microscopic rearrange-
ments on the stored elastic deformation U , for a constant load-
ing rate ε̇. Rearrangements relax exponentially the deformation
over a time τrelax, with here ε̇τrelax = 0.02 ≪ 1. In the present
macroscopic model, rearrangements are coarse-grained.
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Fig. 5. Response to imposed shear for two examples of yield
functions. Dashed solid line: abrupt transition, h(U) = H(U −

UY ) (Eq. (2)). Thick line: finite Uy, and linear interpolation
h(U) = (U − Uy)/(UY − Uy)H(U−Uy) (Eq. (A.3)). Here Uy =
0.75 UY . See Figure 12 for more examples.

This dissipated power is proportional to ε̇, and not
quadratic as in viscous flows, although the microscopical
origin is a local viscous dissipation [35].

The elastic deformation is almost independent on the
shear rate ε̇ (see Fig. 4). To obtain a steady shear in a solid
regime, when U saturates at the value UY , an experimen-
talist has to apply a constant external force which balances
the average elastic stress, and does not depend on ε̇.

Such a dissipated power linear in ε̇, and a steady force
which does not depend on ε̇, are characteristic of a solid
friction [36,37].

3 Prediction and tests

We model the foam response in one type of mechanical ex-
periment, imposed deformation, and in two types of rheo-
metrical experiments, creep flow and oscillating shear.

3.1 Imposed shear

Here, we calculate the transient response during a shear-
ing experiment, that is, the relation U(ε) between applied
strain ε and elastic deformation U . For simplicity we take
here ε = U = 0 at the start of the experiment, but that
assumption is easy to relax.

By direct integration, see appendix, we show the
material’s response: the elastic deformation U is close to
the imposed strain ε at low applied strain, and tends to
a saturation value at large applied strain. This robust
behaviour does not depend much on the chosen yield
function (see Fig. 5).

Thus the distribution of bubble sizes does not affect
much the foam’s transient response (as opposed to the
liquid fraction, which drastically affects UY [31]). This ex-
plains why in the literature the function U(ε) is sometimes
taken for simplicity as a piece-wise linear function or as a
hyperbolic tangent [18].

This provides both the physical origin for the function
σ(ε) of the model by Janiaud et al. [18], and a justification
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Fig. 6. Response to constant applied stress: (a) elastic defor-
mation versus time and (b) local strain rate versus time, with
a sharp transition to plasticity at U = UY . In both figures
the stress grows from bottom to top: below yield values, σapp

equals to 0.5, 0.7, 0.9 times σY (solid lines) and above yield
values, σapp equals to 1.1, 1.3, 1.5 times µUY (dashed lines).
The time is adimensioned by λ = η/µ.

for their (up to now arbitrary) expression σ = σY f(ε/εY ):
the function f corresponds to the present elastic deforma-
tion U , while εY is the yield deformation they chose equal
to 1 for simplification.

3.2 Creep under constant applied stress

A creep experiment in a rheometer applies a constant
stress σapp. It determines the effective viscosity ηeff from
the steady shear rate:

ηeff = lim
t→∞

σapp

ε̇(t)
. (10)

The rheological response is found from equation (7)
with σ = σapp, and from equation (3). The elastic load-
ing and the strain rate are plotted in Figure 6. The elas-
tic deformation saturates to σapp/µ when it is below the
threshold UY , and that it saturates to UY when above the
threshold, over a characteristic time λ = η/µ.

At long times, the strain rate tends towards vanishing
values below yield stress (the flow stops), and tends to
finite values above the yield: ε̇(t → ∞) = (σapp−µUY )/η.
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Fig. 7. Response to constant applied stress: (a) elastic de-
formation versus time and (b) strain rate versus time, with
a smooth appearance of plasticity in between a plasticity
onset threshold Uy and saturation UY . Plasticity starts at
Uy = 0.75 UY , with the linear interpolation of equation (A.3).
Same legend as previous figure.

We thus deduce the effective viscosity:

ηeff = ∞ when σapp ≤ µUY , (11)

ηeff =
η

1 − µUY

σapp

when σapp > µUY . (12)

Taking a smooth plastic transition (Eq. (5)) does not
changes the overall features, except that the decelera-
tion times below yield are no longer superimposed, see
Figure 7.

3.3 Oscillating shear

A Couette apparatus is another typical rheometry experi-
ment [9,11,29,38]. It measures the stress σ(t) on the walls
while imposing an applied sinusoidal shear strain of pul-
sation ω = 2π/T :

ε = γ sin(ωt). (13)

3.3.1 Hysteresis cycle and non-linear response

To test the effect of hysteresis of the model we calculate
the response to such a periodic oscillatory shear bounded
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Fig. 8. Long-time periodic response to an oscillatory shear,
for three amplitudes: ε/UY = 0.75, 1.1 and 1.8. (a) In the case
where the plasticity appears abruptly at UY , (b) gradual tran-
sition in between Uy and UY , with Uy/UY = 0.5 (Eq. (A.3)).

by amplitudes γ and −γ. In the slow shear limit, the fre-
quency does not play any explicit role. We can thus keep
it fixed without loss of generality.

We integrate equation (3). The periodic elastic
deformation-versus-strain curve is plotted in Figure 8,
top. The stress response is linear in strain below the
threshold, and saturates above in plastic regime, exhibit-
ing a strong hysteresis.

Reversing the sign of the loading instantly stops any
plasticity and the reponse becomes purely elastic. Multi-
ple loading does not increase the slope of the loading part,
nor the value of saturation yield; the foam is described
as perfectly plastic. Such features are observed in exper-
iments on other amorphous solids [39,40] (as opposed to
strain-hardening features of crystalline metals [2]).

Integration of equation (4) describes a smooth varia-
tion of deformation, see Figure 8, bottom.

3.3.2 Storage and loss moduli: predictions

In complex notation the stress response σ∗ is linked to
the strain ε∗ by σ∗ = (G′ + iG′′)ε∗. Here G′ is the storage
modulus and G′′ the loss modulus of the material, defined
as the in-phase and out-phase part of the response (first
term in a Fourier series, see non-linear models [19,41,42]).

When increasing the amplitude γ of the imposed si-
nusoidal shear strain, the response is first linear until the
amplitude at which G′ and G′′ start to vary. In both the
linear and non-linear regimes, the storage and loss moduli
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Fig. 9. Storage and loss moduli versus strain amplitude for a
monodisperse emulsion. Symbols: experimental G′ (circles) and
G′′ (triangles) in a close-packed emulsion (Fig. 1 of Ref. [43],
fraction of the continuous phase 20%, droplet size 0.53 µm,
oscillation pulsation ω = 1 rad s−1). Lines: models for G′ (solid
line), and for G′′ with an abrupt transition (dashed line), with
viscosity (dash-dotted line), with viscosity and a smooth yield
function h = (U/UY )2, Uy = 0 (solid line). Model parameters:
shear modulus µ = 1.7 103 Pa, yield deformation UY = 0.045,
viscosity η = 30 Pa.s.

are calculated as:

G′ = −
1

γ2

1

πω

∫ T

0

σ(t)dε̇,

G′′ =
1

γ2

1

π

∫ T

0

σ(t)dε, (14)

G′ is proportional to the area enclosed by the (σ(t), ε̇(t))
curve, while G′′ is proportional to the area enclosed by the
(σ(t), ε(t)) curve. When plasticity occurs, the cycle has a
non-vanishing area in the (σ(t), ε(t)) diagram, meaning a
non-vanishing loss modulus G′′.

In the present model σ(t) depends on the current elas-
tic deformation U(t) and shear rate ε̇(t) (Eq. (7)). For the
case of the abrupt elastic/plastic transition, the analytical
integration of areas is simple and provides the following
solutions for the moduli. Using equations (14) we obtain,
when γ ≪ UY :

G′ ≃ µ,

G′′ = η, (15)

which is the usual linear visco-elastic regime. Note that
our model predicts frequency-independant moduli, for
a fixed small amplitude γ. At large amplitudes, when
γ ≫ UY :

G′ ≃ µ
4

π

(

UY

γ

)3/2

,

G′′ = µ
4UY

πγ
+ η. (16)

10
−3

10
−2

10
−1

10
0

10
1

10
−1

10
0

10
1

10
2

γ
G

’,G
’’ 

(P
a)

 

 

G’
 G’’

Fig. 10. Same as Figure 9 for a polydisperse foam [44]. Liquid
fraction 5%, bubble size 40 to 70 µm, ω = 1 rad s−1. Lines:
models for G′ (solid line), and for G′′ with an abrupt transition
(dashed line), with viscosity and a smooth yield function h =
(U/UY )2, Uy = 0 (solid line). Model parameters: µ = 100 Pa,
UY = 0.2, η = 15 Pa.s.
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Fig. 11. Same as Figure 9 for a monodisperse foam [38]. Liquid
fraction 8%, bubble size 21 µm, ω = 1 rad s−1. Data of G′ and
G′′ are normalised by µ and γ by UY , while ηω/µ = 0.08. Same
legend as Figure 10. Inset: strain-rate frequency superposition:
same data plotted as a function of pulsation ω, for a given
maximum strain rate γ̇0 = ωγ [20].

These asymptotic dependencies in γ−3/2 and γ−1, re-
spectively, are obtained analytically and are robust with
respect to the model. The analytical expression of G′ and
G′′ over the whole range of γ, but with η = 0 is explicitly
presented in references [21,22].

For a smooth yield function h, predictions are obtained
numerically and plotted on Figures 9–11.
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3.3.3 Comparison with experiments on emulsions and foams

Rheometry measurements of monodisperse emulsions [43]
(Fig. 9) and polydisperse foams [38,44] (Figs. 10 and 11)
directly yield, without hypotheses, the values of the mate-
rial parameters required by the model. The shear modulus
µ is read from the value of G′ at low amplitude. The vis-
cosity η is read from the value of G′′ at low amplitude
(or the value of the minimum, in Fig. 9, where the two
data points at γ < 10−3 have too large error bars to be
taken into account, according to T. Mason, private com-
munication). The yield deformation UY is read from the
intersection of low amplitude plateau of G′ and its large
amplitude −3/2 exponent power law.

A purely elasto-plastic model is enough to predict G′

correctly, over the whole range of amplitude, including
the −3/2 exponent power law. This simplest model also
describes correctly the large amplitude trend for G′′.

The low amplitude value of G′′ can be modelled by in-
cluding a viscosity (dash-dotted line of Fig. 9), which con-
firms that viscosity is relevant even in such slowly sheared
models. This procedure is at the expense of a slight over-
prediction at large amplitudes. This latter aspect suggests
a possible shear-thinning, that is a decrease of the viscosity
η with the shear rate, similarly to the observed reduction
of the drag of foams in motion in channels [31].

The agreement between the data and the model, with-
out adjustable parameter, is good. It is still improved,
even for G′′ at intermediate amplitudes, if we account for
the fact that the first T1s appear gradually at a value Uy

lower than UY (solid lines in figures for G′′). Even the
value of Uy itself is not very important, and in order to
avoid introducing a free parameter we use here Uy = 0
and a smooth yield function.

These result suggest that data can be rescaled with
the yield deformation UY , and it suggest a rescaling when
plotting data as a function of frequency, following the
strain-rate frequency superposition method (SRFS [20]).
This method considers measurements with a fixed maxi-
mum strain rate γ̇0 = ωγ, it is therefore equivalent to vary
frequency or oscillation amplitude. The natural rescaling
for pulsation that appears is ω/b(γ̇0) = ω/(γ̇0/UY ) =
UY /γ, see inset of Figure 11, and our model predicts the
global shapes of the moduli curves as observed in [20]. The
characteristic frequency b(γ̇0) is here linear in γ̇0, also in
agreement with the trend observed in [20] for large enough
strain rates.

4 Discussion

4.1 Discussion of the predictions

Independently from us, Höhler et al. solve a purely elasto-
plastic model [21,22]. Since they neglect the viscosity, they
can eliminate U and replace it by σ/µ. The agreement
of their model with data of Figure 11, as well as other
experimental data, is good for G′ over the whole range of
amplitude; and also for G′′ but only at large amplitude,

where the dissipation comes from the relaxation after T1s
rather than from η.

Our models describes better: i) G′′ at low amplitude
using viscosity; and ii) G′′ at intermediate amplitudes, if
we account for the fact that the first T1s appear at a value
Uy lower than UY .

The predicted curves are robust with respect to Uy.
This implies that we do not need to fit it; but that, con-
versely, we are not yet able to deduce Uy from G′′ data.
If we had a direct experimental measurement of Uy, we
could inject it in the model to predict G′′ at intermediate
amplitudes, near UY , but the resulting predictions would
be very similar to the present ones.

While Uy corresponds to the onset of isolated plas-
tic events, at a deformation UY the plastic events have a
macroscopic effect: they catch the total strain; the foam
flows without increasing its deformation any longer.

The effective viscosity ηeff diverges to infinite values
when σapp/µ → U+

Y . This means that the foam comes
close to its yield deformation, in the fluid sense. This
change in behaviour was shown by [45], and modelled by
a granular model with a velocity-dependent friction. Here,
the dynamics is entirely driven by a constitutive equation
with shear-rate–independent parameters. It is the tran-
sient elastic loading that drives a transient flow, which
stops when the stress is not strong enough.

The trends of Figure 6 agree with experimental data
on various material reported in [45], at least with granu-
lar materials and emulsion. The present model does not
predict the apparent shear-thinning behaviour observed
with their experimental data with foams [45], where an in-
crease of shear rate with time is found [46]. The low ampli-
tude predictions for the visco-elastic regime (see Eq. (15))
are frequency-independent moduli. The limitation of the
present model is thus that it does not fully capture the
slight increase of the loss moduli at low frequency, and
the ω1/2 trend at large frequencies (see for instance the
case of foams [9]).

4.2 Elastic, plastic, viscous model

A complete model for an elastic, plastic, viscous foam re-
quires to recognise the role of three physical variables U ,
ε̇, ε̇P . There is a relation between them (Eq. (1)). Unless
specific approximations apply, a foam’s representative vol-
ume element (RVE) is characterised by two independent
variables: we suggest to select the local elastic deforma-
tion U , and the local shear rate ε̇, which are intuitive and
physically relevant. Both of course depend on the sample’s
past history, but this history plays no explicit role. Both
are always defined, whether in elastic, plastic or viscous
regime [25]. Two recent works [20,47] find that G′ and
G′′ depend on the strain amplitude and on the strain rate
(rather than on the frequency), in the same spirit as our
phase diagram (Fig. 3).

Each volume element can thus be plotted as a point in
a phase diagram (Fig. 3); that is, the (ε̇, U)-plane [15]. In a
heterogeneous flow, different volume elements of the same
foam are plotted as different points. A volume element’s
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evolution is a trajectory on this plane. Simple materials
correspond to the axes of the plane: pure elastic and pure
plastic regimes on the vertical axis, pure viscous regime
(Navier-Stokes) on the horizontal axis.

The importance of U is the most original feature of
the present model: U cannot be entirely determined by ε̇
since the latter can change sign; U cannot be entirely de-
termined by σ if the viscous contribution is not negligible.

The yield function describing the occurrence of plas-
ticity can be linked to the traditional hardening modu-
lus, used for the description of plastic materials [48]. It
is defined as K = dσ/dεp, while the elastic modulus is
µ = dσ/U . In the present model, the hardening modulus
is dependent on the elastic deformation: K = 1/h(U)− 1.
It therefore vanishes when U tends to its saturation value
UY : at this point the material does not harden any more.

A deformation beyond UY is not accessible when start-
ing from rest (Fig. 3). But the foam could initially be pre-
pared (for instance artificially [49]) in a configuration very
far from equilibrium. Under a steady shear rate ε̇, the de-
formation U always tends towards UY (ε̇), whether from
below or from above.

In a flowing foam, there is always a viscous dissipa-
tion. Its contribution becomes dominant in front of the
plastic dissipation if ε̇ > µU/η. This is compatible with
the slow shear criterion, ε̇ ≪ τ−1

relax (i.e. on a second Weis-
senberg number that is here Wim = ε̇τrelax ≪ 1), if there
is a scale separation between the microscopic relaxation
time τrelax towards local equilibrium and the large scale
time η/µ. The dimensionless ratio µτrelax/η of microscopic
to macroscopic times is analogous to the parameter I of
granular materials [50].

4.3 Perspectives

This model could in principle be generalised to higher ve-
locity gradients [23]. This would require a high flow ve-
locity varying over a small scale, and τrelax could play
an explicit role. The deviation from equilibrium, of or-
der ε̇τrelax, would become significant: for instance, under
a steady shear the limit value of U could become larger
than UY .

A rheometer such as a Couette apparatus can mea-
sure σ12 = σ (tangential force per unit wall surface) and
ε12 = ε/2 (components of the symmetrized deformation
gradient), in a coordinate system aligned with walls. For
comparison with tensorial data it is especially important
to bear in mind that there is a factor 1/2: the threshold
UY on oscillation amplitude ε as measured by a Couette
rheometer, corresponds to a threshold UY /2 on the ten-
sorial deformation ε12. The present scalar approach can
be generalised to take into account such an influence of
the orientation of material deformation, as well as spatial
variations [17,51].

The present paper is a contribution to a lively debate.
Can a foam be described as a continuous material? We
tend here to answer “yes”, in the same spirit as many re-
cent papers which describe or predict rheological proper-
ties at large scale [17,18,21–23,26,52]. Statistical descrip-

tions of fluctuations and their correlations [12,13,15,16,
45] are then useful in describing even more complex rhe-
ological behaviour such as shear banding [14] or growing
correlation length scale near the glass transition [53]. In-
terestingly, even in granular materials, where very large
scale fluctuations are known to occur, a recent paper em-
phasises the dominant role of the “continuous material”
description based on averages [50].

We thank E. Janiaud for critical reading of the manuscript,
R. Höhler for comparison of our calculations before publi-
cation, F. Rouyer for providing experimental data, S. Ataei
Talebi, I. Cheddadi, B. Dollet, C. Quilliet, C. Raufaste, and
P. Saramito for discussions, T. Mason and A. Saint-Jalmes for
comments on their experimental data.

Appendix A. Elastic-plastic transition

Appendix A.1. Transient response from rest

We assume (in this section only) that the deformation rate
ε̇ keeps a constant sign. Under this essential assumption,
we can calculate analytically the transient response during
a shearing experiment. That is, the relation U(ε) between
applied strain ε =

∫

ε̇ dt and elastic deformation U .
The yield function h is defined to interpolate between

h(U) = 0 for 0 < U < Uy, and h(UY ) = 1. By direct
integration, equation (5) yields

ε =

∫ U

0

dU

1 − h(U)
. (A.1)

Here, without further loss of generality, we have also as-
sumed (but it is easy to relax) that ε = U = 0 at the start
of the experiment, and that ε̇ ≥ 0, so that U ≥ 0 too.

Equation (A.1) yields the function ε(U), which can be
inverted to obtain U(ε). These functions can be measured
on experiments and compared with predictions derived
from direct measurements of h(U).

Whatever the function h(U), equation (A.1) implies
that U ≈ ε as long as U < Uy: applied and elastic defor-
mation are equal in the elastic regime. At the onset of plas-
ticity (or topological changes), U > Uy, they differ. When
U gets close to UY the r.h.s. of equation (A.1) diverges.
Thus, when ε increases arbitrarily, U tends asymptotically
towards the saturation value UY .

Appendix A.2. Examples of yield functions h

Table 1 proposes a few examples of yield functions h, and
some are plotted in Figure 12.

Equation (3) is only a particular case of the more gen-
eral equation (5), with h being the discontinuous Heaviside
function:

h(U) = H(U − UY ). (A.2)

Equation (A.1) thus includes the case of the abrupt
transition.
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Table 1. Elastic deformation for different examples of yield
function h, for a non-deformed initial condition U(0) = 0 and
with ε̇ of constant sign.

Yield function h Elastic response U(ε)/UY

H(U − UY ) ε −H(ε/UY − 1)ε

finite Uy (Eq. (A.3)) equation (A.4)

(U/UY )0 0

(U/UY )1 1 − exp(−ε/UY )

(U/UY )2 tanh(ε/UY )

sin2(U/UY ) arctan(ε/UY )

0 1
0

1

U / U
Y

h

(a)

0 1 2 3
0

1

ε / U
Y

U
 / 

U
Y

(b)

Fig. 12. Responses from rest for some examples of yield func-
tions in Table 1. (a) h(U); (b) U/UY versus ε/UY : since they
are very similar, for clarity only some of them are plotted.
Thick solid line: abrupt transition, h(U) = H(U − UY ). Thin
line: finite Uy, here Uy = 0.75 UY , and linear interpolation
h(U) = (U − Uy)/(UY − Uy)H(U − Uy) (Eq. (A.3)). Dashes:
vanishing Uy and quadratic interpolation, h = (U/UY )2. Dots:
vanishing Uy and linear interpolation, h = (U/UY ).

An example of a yield function with finite Uy is a piece-
wise linear function:

U ≤ Uy h(U) = 0,

U ≥ Uy h(U) =
U − Uy

UY − Uy
. (A.3)

and equation (A.1) yields directly:

ε ≤ Uy U(ε) = ε,

ε ≥ Uy U(ε) =
UY

UY − Uy

−

(

UY

UY − Uy
− Uy

)

e
−

(

ε−Uy

UY −Uy

)

. (A.4)

We can interpolate between abrupt and smooth transi-
tions, using the family of model power law yield functions

h(U) =

(

U

UY

)n

. (A.5)

For instance, the quadratic expression h(U) = (U/UY )2

yields U(ε) = UY tanh(ε/UY ). With these functions, plas-
ticity appears more or less gradually, as soon as U > 0.
That is, Uy = 0. The limit n → ∞ is the Heaviside func-
tion (Eq. (A.2)).

More generally, the yield function can be thought as
the convolution of the Heaviside function H and a distri-
bution of yield values pY :

h(U) =

∫

pY (UY )H(|U | − UY )dUY . (A.6)

For instance, if the distribution of yield values p is a Dirac
peak at UY , it results in a Heaviside yield function h
(Eq. (A.2)).

Appendix A.3. Robustness with respect to the choice
of h

Some functions U(ε) from Table 1 are plotted in Fig-
ure 12b. Strikingly, they do not depend much on the actual
expression of h(U). In fact, only the expression of h near
UY matters; the relation between ε and U is robust. The
elastic deformation U is close to the imposed strain ε at
low applied strain, and tends to a saturation value at large
applied strain.

The only important feature of h is its derivative h′ just
below the yield point:

h′ =

(

dh(U)

dU

)

U→U−

Y

. (A.7)

It determines how the fraction in the r.h.s. of equa-
tion (A.1) diverges. Thus U(ε) is not the same if h′ is
zero or infinite, or even not defined as in equation (A.2).
If it is infinite, U reaches the saturation value at a finite
value of applied deformation.

Conversely, if h′ is finite, as in most examples of Ta-
ble 1, the behaviour is universal. In equation (A.1), the
fraction diverges as (UY −U)h′. Thus, whatever the value
of h′, ε(U) diverges logarithmically and U(ε) tends expo-
nentially towards UY .
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