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Considering the elastic response of the membrane of a lipid vesicle (artificial cell) in an
arbitrary three-dimensional shear flow, we derive analytical predictions of vesicle shape
and membrane tension for vesicles close to a spherical shape. Large amplitude deviations
from sphericity are described using boundary integral numerical simulations. Two possible
modes of vesicle rupture are found and compared favourably with experiments: (i) for
large enough shear rates the tension locally exceeds a rupture threshold and a pore opens
at the waist of the vesicle and (ii) for large elongations the local tension becomes negative,
leading to buckling and tip formation near a pole of the vesicle. We experimentally check
these predictions in the case of strong acoustic streaming flow generated near ultrasound-
driven microbubbles, such as those used in medical applications.
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1. Introduction

Small gas bubbles, when placed in a sound field, are powerful actuators: their
vibration, displaying a displacement amplitude much higher than that in the
surrounding liquid medium, leads to strong flow fields known as acoustic
streaming. Oscillating bubbles are also known for being very efficient scatterers
of sound, a property used to enhance the contrast of echographic images by
injecting micron-sized bubbles as contrast agents in the blood stream (see Chang
et al. 1993; Becher & Burns 2000). In the course of such applications, mechanical
effects on nearby tissues were discovered, including efficient cell membrane
permeabilization in the vicinity of these bubbles (Miller & Quddus 2000; Ward
et al. 2000), due to the opening of small pores (Taniyama et al. 2002). Although
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the sound amplitudes in most of these experiments are very large, smaller driving
pressure amplitudes below 1 bar have also proved sufficient to induce such effects
(Greenleaf et al. 1998). This local sound-induced permeability (sonoporation)
opens the perspective of in vivo drug delivery or gene transfer in a targeted area,
where the sound is applied.

Acoustic streaming is a prime candidate for the aforementioned mechanical
actuation effects. It was observed that acoustic streaming flow from gently
oscillating micron-sized bubbles leads to shear forces that are sufficiently strong
to rupture lipid membranes (Marmottant & Hilgenfeldt 2003). Vesicles composed
of a single lipid bilayer were used as artificial cells of controlled mechanical
properties in that study. The steady deformation of vesicles in simple shear flows has
been well understood; it was studied numerically with boundary integral methods
(Kraus et al. 1996) or particle dynamics methods (Noguchi & Gompper 2004),
experimentally inaCouette apparatus (deHaas etal. 1997) ornearawall (Kantsler&
Steinberg 2006; Mader et al. 2006), and analytically (Seifert 1999). In the present
article, we will be interested in describing the vesicle membrane tension and in
understanding the rupture mechanism of the membrane in arbitrary flow fields,
including those set up in acoustic streaming.

This article is organized as follows. An analytical study of small vesicle
deformation for arbitrary flow fields, focusing on the spatial dependence of
membrane tension, is described in §2. The case of large deformation amplitudes
is treated numerically in §3. The shear flow originating from a vibrating bubble is
explained in §4. Experiments showing the elongation and rupture mechanisms of
a lipid vesicle are described in §5.
2. Elongation and tension of a vesicle in a shear flow

The purpose of this section is to determine the response of the vesicle in a shear
flow, in the case of arbitrary small amplitude deformations. We will focus on
calculating the membrane tension and its spatial dependence along the deformed
vesicle.
(a ) Elasticity of the membrane

Shear stress in a liquid leads to deformation of lipid vesicle membranes, which
resist the shear through membrane elasticity. The elastic properties are
parametrized by an extension modulus with typical value KAx0:24 N mK1

(Boal 2002) and a bending modulus kx0:85!10K19 J (Rawicz et al. 2000). The
lipid membrane is a quasi-two-dimensional liquid; its elastic shear modulus
within the membrane plane vanishes.

The total lipid area A of the vesicle can be decomposed as AZApCAfluct, with
Ap as the contour area of the mean shape and Afluct as the excess area generated
by thermal fluctuations. The fluctuation area at equilibrium for vanishing
tensions is Afluct=AZkBT=8pk!lnðp2R2=6b2Þw0:04 for a vesicle of radius
Rw10 mm, kw10K19 J and bw1 nm, a molecular scale that gives the minimum
wavelength of the thermal undulations (de Haas et al. 1997). Ap provides a
reservoir of area under shape changes.
Proc. R. Soc. A (2008)



1783Deformation and rupture of lipid vesicles
In the shear flow, the vesicle adapts to the applied shear stress by developing a
tension s in its membrane and by deforming into an ellipsoidal shape. We define
the deviation from sphericity by DApðsÞZApðsÞKAs, with As as the area of a
sphere of the same volume. At zero shear flow and near vanishing tension, the
vesicle might already be deflated and have a non-vanishing DAp. Under shear,
this deviation will be augmented by the ironing out of fluctuations so that the
global elastic response to a homogeneous tension s is

DApðsÞ
A

x
DA0

A
C

s

KA

: ð2:1Þ

The first term on the r.h.s. represents the initial area after ironing out, while the
second one is due to the membrane elasticity itself.
(b ) Deformation and distribution of membrane tension

(i) Arbitrary three-dimensional linear flow

To determine the location and triggering of membrane rupture, we now focus
on the value and inhomogeneity of membrane tension, as well as the deformation.
We begin with an analytical prediction at small deformation amplitudes, in the
general case of an elongational and rotational flow. Indeed, in experiments we
present, the flow is not a simple linear shear flow (where the elongation and
vorticity rates are equal), but can be mainly elongational (near a stagnation
point) or rotational (in a vortex centre).

We linearize an arbitrary flow field around the centre of mass location of the
vesicle, i.e.

vi ZGijxj CUijxj ;

at a position xi away from the centre, where Gij is the rate of strain tensor and Uij

is the antisymmetric rotational tensor, both evaluated at the centre of the
vesicle. We choose the three-dimensional vector basis (e1, e2 and e3) with
coordinates (x1, x2 and x3) so that Gij can be written as diag(g1, g2 and g3); the
rotation vector associated with Uij is UZUe3 and e1 supports a larger
elongational shear rate than e2, i.e. g1Og2.

We consider the vesicles whose internal liquid has the same viscosity h as the
external liquid, leading to a simple tank-treading motion of the membrane, while
viscosity contrast leads to complex dynamics termed tumbling (Rioual et al.
2004), breathing (Misbah 2006) or trembling and swinging (Kantsler &
Steinberg 2005).

The behaviour of quasi-spherical vesicles in a flow was described by Seifert
(1999). He studied the coupling between the deformations of the (incompressible)
membrane and the hydrodynamics of the viscous motion of the fluid inside and
outside the vesicles. The inhomogeneous tension of the membrane s(q, f)
(in spherical coordinates around the vesicle centre) and the local deviations from
sphericity rZR(1Cu(q, f)) create forces on the fluid. Using the Stokes equation, the
force equilibriumprescribes the shapedeviationand interface tension.Themembrane
tension and shape deviations can both be expanded in spherical harmonics.
Proc. R. Soc. A (2008)
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Figure 1. Schematic of the vesicle outline in the plane orthogonal to the vorticity vector UZUe3.
The largest elongation rate eigenvector is oriented along e1.
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Here, we explicitly derive the tension distribution in addition to the shape
deviation. We use the fact that, for a (three-dimensional) linear flow, the normal
and divergence Lamb components defined by Seifert (1999; for the velocity field
on a sphere of radius R) are equal. Such a flow gives rise to mode 2 harmonics
only, and thus we can use the expressions by Seifert to obtain the resulting mode
2 harmonics for the shape and tension. The vesicle outline in the x1x2-plane
(orthogonal to the x3-axis of vorticity) is then an elliptic curve whose major and
minor semi-axes are

R
max=min
12

R
Z 1G

5

4

hðg1K g2ÞRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�s2 C 55

12 hUR
� �2q K

5

4

hg3R

�s
; ð2:2Þ

with �sZs0;0C6k=R2. In the following, we assume large tension compared with
the curvature-induced tension ðs0;0[K6k=R2Þ so that s0;0x�s. Given the
typical values cited above, this is an excellent assumption.

The major axis is oriented under an angle Df0 with respect to the elongation
x1-axis, in the direction of the rotation U (figure 1). The phase angle difference
with respect to the main elongation axis is

Df0 Z
1

2
arctan

55

12

hUR

�s

� �
: ð2:3Þ

The vesicle is extended along the rotation x3-axis, with a semi-diameter

R3

R
Z 1C

5

2

hg3R

�s
: ð2:4Þ

When the rotation ratio hUR=�s is very small, the directions of the vesicle
extension are oriented along the elongational axis and the extensions follow the
elongational rates ðRmax

12 =RÞx1Cð5=2Þðhg1R=�sÞ, ðRmin
12 =RÞx1Cð5=2Þðhg2R=�sÞ

and ðR3=RÞx1Cð5=2Þðhg3R=�sÞ.
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1785Deformation and rupture of lipid vesicles
The average tension �s is derived from the area constraint. For small
deviations, the increase in the outline area is written as

DApð�sÞ
A

Z
5

6

ðhðg1K g2ÞRÞ2

�s2 C 55
12 hUR
� �2 C 5

2

ðhg3RÞ2

�s2
: ð2:5Þ

Equating this area increase to the elastic response (equation (2.1)) implicitly
yields the average surface tension �s for a three-dimensional flow. Here, we
assume that the average tension �s controls the total area extension.

Note that for vanishing rotation ratio hUR=�s, the area extension takes the
symmetric form DAp=A0Z5=3!h2R2ðg21Cg22Cg23Þ=�s2, using the flow incom-
pressibility g1Cg2Cg3Z0.

The liquid shear forces on the membrane are not homogeneous and promote
three membrane tension harmonics, s2,0 and s2,G2, belonging to mode 2. In the
x1x2-plane perpendicular to the rotation axis, the surface tension has maximum
and minimum values given by

s
max=min
12

�s
Z 1G

5

4

hðg1K g2ÞR
�s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�s2C 35

12 hUR
� �2

�s2C 55
12 hUR
� �2

vuut K
5

4

hg3R

�s
: ð2:6Þ

The surface tension minimum smin
12 is located along an axis that makes an angle

Df0
0 with the x1-axis, and which is smaller than the shape orientation angle Df0

of the largest elongation

Df0
0 Z

1

2
arctan

55

12

hUR

�s

� �
K

1

2
arctan

35

12

hUR

�s

� �
:

The surface tension maximum smax
12 is located along a perpendicular axis in

the same plane (figure 1). On the x3-axis, the surface tension is locally minimal
if g3O0.

When rotation is small ðhUR=�s/1Þ, the relative changes in the surface
tension are ðsmin

12 =�sÞxKðDRmax
12 =RÞ, and similarly for ðDsmax

12 =�sÞxKðDRmin
12 =RÞ

and ðDs3=�sÞxKðDR3=RÞ. The relative changes in the surface tension are
opposite to those of the extensions, while the radius maximum is located at the
minimum of tension (and vice versa).
(ii) Application to two-dimensional linear shear flow

The small amplitude deformation of a vesicle in a shear flow was explicitly
derived in the specific case of a simple plane shear uxZGy, for the case of a
vesicle with thermal fluctuations but without elasticity (de Haas et al. 1997;
Seifert 1999). Recent experiments confirmed the prediction on deformation of the
shape (Kantsler & Steinberg 2005), as well as the numerical simulations
(Beaucourt et al. 2004). Here, we derive the equations for an extensible elastic
membrane.

In a two-dimensional linear shear flow, uxZGy, g1ZKg2ZG/2, g3Z0, UZG/2
and the positive elongational rate eigenvector e1 makes an angle of p/4 with Ox.
The deformation is described by the harmonics u2,G2 only, when the spherical axis
Oz is perpendicular to the flow. The contour in the xy-plane is an ellipse, whose
Proc. R. Soc. A (2008)
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semi-axes are, according to equation (2.2),

R
max=min
12

R
Z 1GD; with D Z

5

4

hGR

�s
; ð2:7Þ

while the shape is inclined by the angle Df0Zð1=2Þ arctanðð11=6ÞDÞ with respect
to the main elongation axis. The deformation is parametrized by only one
parameter, known as the Taylor deformation parameter DZ(LKB)/(LCB),
defined with an ellipse major axis of length L and a minor axis of length B. This
equation is similar to the deformation of a liquid droplet with constant interfacial
tension sinterface (Taylor 1932; see also the review article of Stone 1994 and the
comparison between droplets and vesicles by Danker et al. in press). This extends
the domain of applicability of the liquid drop model to fluctuating and extensible
membranes by replacing the interfacial tension sinterface with a variable membrane
tension �s.

Rearranging the terms in equation (2.7), we note that the shear, expressed
here by a shear tension hGR, is counteracted by the product of the variable
membrane tension �s and the deformation D.

The deformation implies an area increase through DZð15=8!DAp=AÞ1=2.
Using the elastic response of area (equation (2.1)), we obtain

DZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15

8

DA0

A
C

�s

KA

� �s
: ð2:8Þ

This expresses the global nonlinear ‘spring-like’ elastic behaviour of the vesicle,
and gives the deformation D as a function of mean tension �s.

Rewriting equation (2.7), the homogeneous variable tension as a function of
shear rate is then implicitly given by

�s

KA

Z
5

4

CaK
Dð�sÞ ; ð2:9Þ

where we have introduced the non-dimensional quantity

CaK Z
hGR

KA

;

which can be called a ‘capillary number’ since the extension modulus has the
dimension of a capillary surface tension (Vitkova et al. 2004).

Thusweobtainboth the tension �s andthedeformationDasa functionofCaK.Two
regimes appear when solving equations (2.8) and (2.9): (i) a small tension regime
when �s=KA/DA0=A, with the deformation being DxD0Zð15=8!DA0=AÞ1=2
and (ii) a large tension regime when elastic increase of the lipid membrane is

predominant, with the deformation tending to be Dxð75=32!CaKÞ1=3.
The inhomogeneity of membrane tension can be given as sZs0;0KDs sin2 q

cos 2ðfKDf0
0Þ, with an amplitude of variation around the average of Dsx

5=4!hGR from equation (2.6), while the maximum and minimum tensions are

smax=min Z �s 1GD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Cð7D=6Þ2

1Cð11D=6Þ2

s !
: ð2:10Þ
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1787Deformation and rupture of lipid vesicles
Themaximum occurs near the narrowest part of the vesicle (where themembrane
distance to the centre is the smallest). The minimum occurs at the angle Df0

0Z
ð1=2Þ arctanð11=6 DÞKð1=2Þ arctanð7=6 DÞ with respect to the main elongation
axis, different from the angle of the shape Df0 (figure 1). From equation (2.10),
we see that Ds is proportional to D to first order.

(c ) Predicted modes of breakup

We now consider the two possible scenarios for breakup, depending on the
extremal values of membrane tension: either the maximum tension reaches a
critical value or the minimum tension becomes negative.

(i) Membrane rupture

The lipid membrane cannot sustain an infinite elastic extension and above an
elastic extension of approximately sc=KAZ3%, the membrane ruptures
(Needham & Nunn 1990; Boal 2002). The condition for breakup ðsmaxOscÞ,
which we approximate by �sOsc for small deformations, provides a rupture
criterion based on the capillary number when using equation (2.9) and
substituting Dð�sÞ

CaKOCacK Z

ffiffiffi
6

5

r
sc

KA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DA0

A
C

sc

KA

s
: ð2:11Þ

(ii) Membrane buckling

Extrapolating equation (2.10) to large amplitudes, we see that the tension
might become negative near the pole, resulting in a buckling of the membrane.
The situation smin!0 occurs when the deformation is larger than a critical value

Dð�sÞODc; ð2:12Þ
which is approximately Dcx1:44 using equation (2.10). The deformation D is a
growing function of CaK, starting from an initial value D0, which is a function of
the initial excess area. The onset of buckling is therefore expected to occur before
rupture when the initial deformation is large enough. The purpose of §3 is to
assess the validity of these predictions, which were based on small deformations
(quasi-spherical shapes).
3. Deformation and distribution of tension at large amplitude:
numerical calculations

(a ) The boundary integral method

A convenient way to compute the dynamics of a vesicle in a Stokes flow is
provided by the boundary integral method (Pozrikidis 1992). For a vesicle, the
force field along the membrane and the velocity field at a point r of the
membrane are related by

hvmemðrÞZ
ð
mem

GðrKr 0Þfmemðr 0Þ dr 0; ð3:1Þ
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where fmem(r) is the force field applied at point r of the membrane and G is the
Green tensor in free space (‘stokeslet’). The original three-dimensional problem
can thus be reduced to a two-dimensional problem involving the membrane only.

This force field can be derived from the Helfrich curvature Hamiltonian
(Helfrich & Servuss 1984),

H Z

ð
mem

k

2
ðcK c0Þ2 C �kgCs

n o
dS; ð3:2Þ

where c is the local curvature of the membrane at point r (cZc1Cc2, c1 and c2
are the two principal curvatures at point r of the membrane); g is the Gaussian
curvature (gZc1c2) that gives rise to a constant after integration since the
topology does not change and we therefore do not take into account this term; s
is the local surface tension; c0 is an eventual spontaneous curvature that we will
not consider in the following; and k and �k are the curvature modulus and the
Gaussian curvature modulus, respectively. The force field generated by this
Hamiltonian can be calculated as

fmem ZKk
1

2
ðcK c0ÞfcðcCc0ÞK4ggCD2Dc

� �
n̂Cscn̂CV2Ds;

where D2D is the Laplace–Beltrami operator on the membrane and V2D is the
gradient operator on the membrane. The first term is the local curvature force
and the second is the well-known Laplace force, while the last describes the
adjustable force necessary to reduce the area towards the equilibrium. In the
limit of small local area changes, the dynamics of the surface tension is given by

ds

dt
Cvt$V2DsZ

KA

A

dA

dt
;

where A(r) is the local area surrounding the point r (triangle in the
computational mesh) and KA is the area extension modulus (large so that the
extension remains small).
(b ) Mesh advection

We use a specific advection scheme to prevent entanglement of the mesh in the
tank-treading regime due to the differential rotation between the points located
in the equatorial region and the vertices located close to the rotation poles.
Rather than remeshing the vesicle from time to time, which is the usual method,
we prefer to modify the advection scheme so that the mesh reaches a steady state
during the tank-treading motion. The mesh is advected to follow the dynamics of
matter only in the normal direction, in the frame moving with the global shape of
the vesicle.Where n̂ðrÞ is the outgoing normal vector at point r of the membrane,
urot is the solid body rotation velocity and vcm is the centre of mass velocity, we
obtain the advection velocity in the laboratory frame as

vadvðrÞZ ½vðrÞKurotðrÞKvcm�$n̂ðrÞn̂ðrÞCurotCvcm:

This scheme can be considered as a continuous remeshing of the vesicle.
Proc. R. Soc. A (2008)
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(c ) Parameters

The algorithm is implemented for a vesicle using a mesh with 642 points,
obtained by refining an icosahedron and adding noise to the point positions to
avoid instabilities. The vesicle is embedded in a simple two-dimensional shear
flow uxZGy. The strain rate G was held constant in all computations, with a
stretching ‘capillary’ number of CaKZG/(KA/hR)Z10K4 (the code was unstable
for higher values), while the bending capillary number was CaKZG/(k/hR3)Z
100, meaning that curvature effects are negligible when compared with viscous
forces. The code was run with time steps of dtZ10K6/(k/hR3), using a steady
shear rate until a stationary shape was obtained (within 1%). The volume of the
vesicle was regularly rescaled to ensure its conservation.

A given initial excess area DA0/A is provided (with respect to the area, a
sphere of equal volume). We prefer to express the initial excess area using
D0Zð15=8!DA0=AÞ1=2, which directly provides the expected deformation for
small strain rates in a two-dimensional flow in the small tension regime.

More commonly, the excess area is linked to the reduced volume
v0ZV=ð4p=3!ðA=4pÞ3=2Þ, comparing the actual volume V to the maximum
available volume for the same area (with a sphere shape). Its expression as a
function of the excess area is v0Zð1CDA0=AÞK3=2. We vary the initial
deformation from D0Z10K3 up to D0Z0.95, so that the initial reduced volumes
v0 range from 0.9999992 to 0.55.

(d ) Results

Depending on the initial deflation D0 of the vesicle, the final steady shape of
the vesicle is an elongated ellipsoid (figure 2). For small deflations, the main axis
of the ellipsoid is along the positive elongational axis of flow, inclined at a 458
angle with respect to the fluid velocity. This angle decreases when deflation
becomes appreciable (as shown by Kraus et al. 1996), in accord with the
deviation angle Df0 increasing with hUR=�swD (equation (2.3)). The longest
axis of the vesicle is not an axis of symmetry; the vesicle diameter is larger in the
direction orthogonal to the plane of the image, where the elongational rate from
the flow is absent. At very large deformation, the shape is far from ellipsoidal,
with a long central part being close to cylindrical (‘cigar’ shape; figure 2d ).

The tension has minimum values near the main axis ‘pole’ of the vesicle and
maximum values at the equator and in the plane of shear. This can be
understood graphically; the shape is flattened due to the additional tension and
extra area bulges out of the initial sphere due to decreased tension.

The position of the minimum tension deviates slightly from the position of the
maximal values radius (figure 2d, the tension minimum being oriented closer to
the 458 axis), a tendency predicted by the small amplitude predictions of the
previous section, the deviation angle Df0

0 being smaller than Df0.
The actual steady deformation was defined here using DZð15=8!DA=AÞ1=2,

where the vesicle and excess areas are evaluated by fitting the vesicle mesh to an
ellipsoid. We did not use the Taylor DZ(LKB)/(LCB) definition that has the
inconvenience of saturating to the value 1 for large elongations. The steady
deformation of vesicles in a given shear flow is found to depend strongly on initial
deformation. At large D0O10K1, the steady deformation D is close to D0, as
expected. However, all initial deformations D0, no matter how small, give rise to
Proc. R. Soc. A (2008)
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Figure 2. Numerical simulation of the steady vesicle shape and tension, in the same shear flow
CaKZ10K4, for different initial deflations (a) D0Z10K2, (b) D0Z0.1, (c) D0Z0.3694 and
(d ) D0Z0.8722. The greyscale represents the value of s/KA.
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a finite value for steady deformation (figure 3a). This effect can be understood
from equation (2.9); small deformations induce strong tensions, which in-turn
increase the elastic area and the actual deformation until a balance is reached,
with the deformation reaching the value predicted by the large tension regime of
equation (2.9). The deformation obtained from the numerical computations is
slightly higher than the predicted value.

The computed average tension is inversely proportional to the actual
deformation and closely follows the low-amplitude prediction (figure 3b), except
at large deformations where the nonlinearities develop fully, resulting in a larger
tension than predicted. The assumption of uniform tension, used in the liquid
drop model, fails at this point.

The minimum tension tends towards the vanishing values for increasing
deformation (figure 3b). For initial deflation parameters D0 larger than 0.95
(v0 smaller than 0.55), the vesicle shape becomes numerically unstable. We
expect a tip-streaming-like instability to occur at this point, since the numerical
shape develops a growing tip before breakdown of the calculation. Similar
buckling instabilities were found on solid capsules (Lac et al. 2004) and on liquid
droplets (Stone 1994). According to the small amplitude deformation theory, the
minimum tension departs from the average with growing deformations (equation
(2.10)). Extrapolating this prediction to finite values surprisingly provides a
correct estimate of smin, and predicts a vanishing tension for Dx1:44 close to the
numerical stability limit.
Proc. R. Soc. A (2008)
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(b) Tension in the vesicle membrane as a function of D, indicating maximum (up triangles), mean
(circles) and minimum (down triangles) values and their comparison with small amplitude
deformation predictions from equations (2.9) and (2.10) (solid lines).
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4. Shear flow generated near an ultrasound-driven microbubble

We now consider the description of the strong shear flow induced by the
vibration of a bubble, prior to the introduction of lipid vesicles into this flow.

The set-up and the materials and methods used in the experiments are
described in detail by Marmottant & Hilgenfeldt (2003, 2004). Briefly, we
consider air bubbles in liquid, of radius aZ10–100 mm, fixed by capillarity on the
wall of a quartz cuvette (Hellma, Germany, 10!10!50 mm). The quartz
cuvette, completely filled with liquid, is excited by a piezoelectric transducer,
glued to one of the cuvette walls, establishing a standing ultrasound wave field in
the liquid (figure 4).
(a ) Recirculating acoustic streaming flow

The fast vibration of the bubble wall, even though perfectly time-periodic,
generates a steady flow; this is the acoustic streaming phenomenon. It has its
origin in the inertial nonlinearity of the Navier–Stokes equations where a
Proc. R. Soc. A (2008)
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boundary vibrating with a displacement e cos ut will give a velocity response
whose components vi can be expanded in e as viZv1ie cos utCv2ie

2 cos2 ut.
While the first term is time-periodic and averages out in time, the second
quadratic term containing e2 cos2 utZð1=2Þe2ð1Ccos 2utÞ gives a steady flow,
on average.

In response to sound, the bubble gently vibrates with an oscillating radius
rZað1Ce0 cosðutÞÞ. Owing to the presence of the wall, the centre of mass is also
translating with a position zZea cosðutKFÞ (Marmottant et al. 2006b). The
acoustic streaming flow resulting from this combination of radial and
translational vibrations was described near a boundary by Marmottant &
Hilgenfeldt (2003). Using this prediction, we plot streamlines near a wall in
figure 5a.

The velocity amplitude predicted by the acoustic streaming is at most
v0Zee0au sin F, near the bubble wall. From the measured oscillation amplitude
ewe0Z0:05 (Hansen et al. submitted) and the radius and frequency parameters
aZ35 mm and fZ67 kHz, we expect the maximum velocity to be of the order
6 mm sK1 (if sin F is of the order 1, in reality sin F was observed to be 0.22,
Marmottant et al. 2006b). The far-field dependence of the acoustic streaming
velocity, decaying as rK3 due to the closeness of the wall, is consistent with the
experimental trend. The motion is thus much localized around the bubble.
(b ) Strain rate generated by the flow

The local deformation of fluid particles is characterized by the rate of strain
tensor GijZðvui=vxjCvuj=vxiÞ=2. After diagonalization, we find the elongation
rate in three directions (g1, g2, g3). Taking the steady streaming component of vi
as the velocity ui , the direction of the positive elongation axis is plotted with an
Proc. R. Soc. A (2008)
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aZ16 mm, with the ultrasound frequency fZ180 kHz); bottom view through the glass wall.
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elongated ellipse (figure 5a). The sign of the transverse elongation rate g3Zux=jxj
is indicated by the filling of the ellipse. When a fluid particle is approaching the
symmetry axis, the transverse elongation rate g3 is negative. Since the other
elongation axes maintain a negative and a positive elongation rate, the signs of
the elongation rates are (C, K and K): an initially spherical fluid particle is
deformed into a cigar-like (prolate) ellipsoid. On the other hand, when the fluid
particle is going further away from the axis, the elongation rates have the signs
(C, C and K): a sphere is deformed into a disc-like (oblate) ellipsoid. A fluid
particle is thus found to alternately deform towards a prolate and an oblate
ellipsoid during a revolution on its orbit, giving rise to the deformations observed
and quantified in figure 6.

The strain rate magnitude is evaluated by the Frobenius norm of strain rate
tensor, GZðg21Cg22Cg23Þ1=2. The strain rate is maximal near the bubble, where
it reaches a value of approximately 10v0/a (figure 5b). The corresponding strain

rate is very high, Gwe2uw3!103 sK1 for typical experimental values.
5. Experimental observations with vesicles

In this section, we present a variety of phenomena that are observed when the
vesicles are in the vicinity of oscillating bubbles. These results qualitatively
compare with and validate the predictive approach of the previous sections.

(a ) Materials and methods

Lipid vesicles are injected into the liquid contained in the cuvette. We chose
giant unilamellar lipid vesicles owing to their well-known mechanical properties
(Rawicz et al. 2000; Boal 2002). Vesicles of radii 10–100 mm were grown with the
Proc. R. Soc. A (2008)
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electroformation method (Dimitrov & Angelova 1987) with the lipid 1,2-dioleoyl-
sn-glycero-3-phosphocoline (DOPC). We fill the vesicles with a liquid different
from the outer liquid, to create an optical index contrast that results in a high
contrast for phase microscopy. For this purpose, the vesicles were grown in a
0.3 M sucrose solution, plus 1 mM of the bactericide sodium azide and then
transferred into an equi-osmolar glucose solution (Sandre et al. 1999). Their
interior appears dark with phase contrast optics. Because the interior density is
4% higher, they slowly sediment and reach the bottom of the cuvette, and thus
the plane of observation for an inverted microscope (Zeiss Axiovert 25CFL,
Germany). For fluorescence microscopy, either the membrane or the interior
liquid was marked. The membrane dye was a florescent lipid, 2-(4,4-difluoro-5,7-
dimethyl-4-bora-3a, 4a-diaza-s-indacene-3-pentanoyl)-1-hexadecanoyl-sn-
glycero-3-phosphocholine (b-BODIPY FL C5-HPC, Molecular Probes, The
Netherlands), chosen for the similarity of its structure with DOPC. They are
both glycerophospholipids, with the same phosphocholine head, and their carbon
chains have comparable lengths. The liquid interior was dyed with a large weight
fluorescent molecule that does not permeate through the membrane (5,6
carboxyfluorescein, Sigma Chemicals). The viscosity of the medium was adjusted
by mixing the water solution with different concentrations of glycerol, providing
higher viscosity solutions, up to 20 times more viscous than water.

The interaction of the bubble with vesicles was observed through the inverted
microscope using phase contrast or fluorescence, and images were recorded on a
digital still picture camera (Sony DSC-S75), a digital video camera (Sony DCR-
PC120E) or a high-speed camera (Kodak Ektapro CR Imager, up to
2000 frames sK1).
(b ) Vesicle deformation

Looking perpendicularly through the glass wall on which the bubble is
attached, along an axis that we call Oz, we observe an apparent periodic
‘bouncing’ of the vesicle on the bubble, due to the projection of the vesicle orbit.
The vesicle is deformed in this process: elongated when it is approaching,
compressed when it is receding (see the high-speed image sequence in figure 6
where the vesicle is out of focus in the last two images).

Seen along the axis Oz, the projected shape is roughly elliptical. This ellipse has
a symmetry axis along the streamline, its extent is ls along this direction and lt in
the transverse one. The aspect ratio of the vesicle seen along Oz is estimated
through the parameter DappZðlsK ltÞ=ðlsC ltÞ (figure 6a). The parameter Dapp

is positive when the vesicle looks elongated along the trajectory and negative when
it looks compressed. It changes sign when the vesicle is nearest to the bubble and
when the vesicle is receding from the bubble (figure 6c).

The shape of the vesicle evolves along its trajectory, experiencing the
heterogeneous liquid strain rate distribution mapped in figure 5. We predict the
vesicle shape, first by determining the streamline on which the vesicle is orbiting
(solid line in figure 6b), then by using the theoretical principal strain rate
elongations along this streamline in equation (2.5). We determine the average
tension for two cases using an incompressible membrane (with an excess area
of 4%) or elastic membrane with equation (2.1). From the average tension, we
can determine the principal axis lengths of the ellipsoidal vesicle (R1, R2, R3),
Proc. R. Soc. A (2008)
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Figure 7. (a–c) Top view: approach of a fluorescent vesicle ðRVx40 mmÞ towards an oscillating
bubble (fZ44 kHz), of radius aZ20 mm, outlined by a white circle, and its final breakup (0.25 s
exposure photographs).
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with R3 the axis transverse to the trajectory plane. We project them to obtain

the apparent axes ltZR3 and lsZðR2
1 cos

2 qCR2
2 sin

2 qÞ1=2, with the axis tilted
by q, to obtain the apparent deformation parameter Dapp. The predicted
deformation reproduces the changes in sign and is quantitatively correct when
the vesicle is close to the bubble (figure 6c). Using the elasticity of the membrane
(solid line) instead of a fixed membrane excess (dashed line) obtains a better
estimate of the vesicle shape at large distances, i.e. small strain.
(c ) Membrane rupture

The deformations are enhanced in a more viscous solution and can be amplified
to the point where breakup of the membrane becomes possible. In all the
experiments that we present in this section, the solution is a 1 : 2 (by volume)
mixture of water and glycerol, which increases the dynamic viscosity by a factor of
approximately 20. Several regimes leading to membrane breakup could be
observed, depending on the parameters governing the bubble oscillation dynamics.
(i) Vesicle approaching the bubble

A large vesicle in the viscous liquid undergoes large deformations even far
away from the bubble, and its membrane eventually ruptures when the vesicle is
close enough (figure 7). The shearing motion of the liquid breaks the membrane
in several pieces (last image).
(ii) Tank-treading vesicle trapped in a vortex centre

Some vesicles can be trapped in the centre of the recirculation vortex; their
position remains stationary and they only display a tank-treading motion. This
attraction to the stationary line happens after a few revolutions in orbits of
decreasing amplitude around the line.

The rotation frequency and deformation increase with the sound amplitude. A tip
pointing towards the bubble is formed on large vesicles (figure 8), and observations
with the microscope at different focusing elevations show that the tip is drawn
between the bubble and the wall, as if the vesicle was aspirated there. Smaller
vesicles are just elongated. Above a critical sound amplitude, the membrane cannot
sustain the deformation and breaks up (not shown).
Proc. R. Soc. A (2008)
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Figure 9. (a–e) Reversible membrane rupture when a vibrating bubble (white circle) transiently
shears the vesicle (tZ0) and is subsequently pushed away. The internal liquid, containing a
fluorescent dye, leaks out through an open pore (tZ40 ms to 3 s). The hole eventually closes
completely (tZ5 s). (a) tZ0, (b) tZ40 ms, (c) tZ0.5 s, (d ) tZ3 s and (e) tZ5 s.

100 µm

(a) (b) (c)

Figure 8. (a–c) Deformation of a stationary tank-treading vesicle for increasing sound amplitude
(RVZ20 mm) near a bubble (aZ50 mm, fZ40 kHz).
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(iii) Reversible rupture: pore opening and closure

The opening of a hole in a lipid membrane is not irreversible and pores can
spontaneously close. As the lipid membrane is liquid in its plane, a line tension
acts on the edge of a pore, effected by the exposed hydrophobic tails of the lipids.
Hole opening and closure have been observed in the case of a lipid vesicle tensed
by an intense illumination or adhesion to a substrate (Sandre et al. 1999;
Brochard-Wyart et al. 2000). The ejection of liquid through the pore then
releases the tension and the hole closes.

In our experiments, vesicles can be subject to a transient shear when an
oscillating bubble, initially attached to the wall, is pushed away by acoustic
pressure when the sound amplitude is suddenly increased. In this fashion, a
vesicle rotating on its trajectory near a bubble experiences a strong transient
shear flow that ruptures the membrane (figure 9). Some internal liquid is ejected
out of this pore and dissipates quickly. The hole appears to close completely after
a few seconds, as the observed leakage of dye ceases. The volume ejection can be
inferred from the size reduction of the vesicle. In figure 9, we measure a volume
loss of 33%.

Using equation (2.11), we estimate the capillary number for breakup to be
CacK x10K2, using sc=KAZ3% and an initial excess area DA0=AZ4%. In our

experiments for small vesicles in pure water (CaKw10K4K10K3), the vesicle
Proc. R. Soc. A (2008)
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Figure 10. (a(i),(ii)) Cusp formation and tip streaming near a 30 mm radius bubble. (b) After
intense cavitation at 40 kHz (the bar is 100 mm long). (c) Single tether pulled out of a vesicle (the
bar is 100 mm long).
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indeed never ruptured. In the glycerol/water mixture with hZ20hwater and large
vesicles Rw20 mm, this breakup criterion is fulfilled at large sound amplitudes,
where we had Gw3!103 sK1. All the observed ruptures occurred in experiments
with such a large capillary number.
(d ) Strong localized deformation: tip and tether formation

The membrane deformation can be localized to a small part of the vesicle.
Experiments with bubbles positioned on a substrate designed with shallow holes
(Marmottant et al. 2006a) showed cusp shapes and tip streaming of the vesicles
(figure 10a). This appears to be a case where breakup is preferred through
negative tension and buckling localized at the tip of the vesicle.

At high acoustic pressures, negative pressure (tension) in the liquid results in
spontaneous formation of small bubbles (cavitation). These bubbles travel fast
in the bulk and abruptly change directions. Exposing a solution of lipid vesicles
to cavitation produces a different kind of vesicle deformation and their shape is
turned into long tubes (figure 10b). The remaining initial vesicle can be seen on
one end of these tubes (figure 10c), where the tube is a tether pulled out of the
vesicle by the large hydrodynamic shear stresses around the moving bubbles.

The extension of a vesicle into a tube was observed by Shahidzadeh et al.
(1998), but for low (0.5 sK1) constant shear rates. The tube can be a stable shape
for the membrane if it is tensionless, especially if its radius is close to the
spontaneous curvature radius of the membrane (Rossier et al. 2003). Here, a
tension is still present in the membrane and results in a pearling instability
(Bar-Ziv & Moses 1994) that is visible in figure 10b.

Compared with the previous experimental situation that never resulted in such a
tether formation, the difference is the size of the cavitation bubbles, which are much
smaller than the vesicle (their apparent diameter when they travel fast in front of
the objective is less than 10 mm), the high intensity of their oscillation and the speed
of their translation. This tether formation process is similar to the local application
of a point force with optical tweezers that is used to pull out the membrane out of
an initially spherical vesicle (Fygenson et al. 1997; Powers et al. 2002).

From theory, the tension is expected to vanish at a specific location of the
membrane when the deformation is large enough (see §2). In practice, vesicles are
not sufficiently deflated initially to reach the large critical deformations
Proc. R. Soc. A (2008)
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determined by the numerical calculation. Tip formation is, however, expected to
occur more easily when the shear flow is not homogeneous but is stronger near
one end of the vesicle. In this case, the flow cannot be linearized and the previous
analysis does not hold any more. This occurs when the vesicle is very close to a
bubble where the flow field is inhomogeneous on scales smaller than the vesicle
size (figure 10a). The same small-scale argument applies to the more extreme
case of tether-pulling.
6. Conclusions and perspectives

Gentle oscillations of microbubbles attached to a wall generate intense acoustic
streaming flows. Soft objects, such as lipid vesicles, experience a high shear stress
in the streaming, which deforms their outline and generates membrane tension
that varies in time and space. The theoretical analysis in a linearized shear flow
shows that the membrane tension has a maximum near the minor axis (the
‘waist’ of the vesicle) and a minimum near the major axis. The average tension
determines the overall shape. The membrane is expected to rupture at the waist
when the maximum tension reaches a critical value (controlled by the capillary
number CaK). On the other hand, the minimum tension can become so small that
it nearly vanishes (which occurs for large enough deformation D), leading to
buckling and a tip-streaming-like process of local membrane extension. Tip
streaming is expected to occur before breakup for deflated vesicles, i.e. those with
sufficient initial excess surface area or in sufficiently inhomogeneous shear flows.

Upon breakup of vesicles, pores are nucleated and interior and exterior fluids are
exchanged. In the case of living cells, these pores are believed to be at the origin of
enhanced drug delivery or gene transfer when diagnostic ultrasound is applied
(sonoporation). However, the acoustic streaming flows are much more controlled
and have much smaller peak stresses than cavitating bubbles in ultrasound
diagnostics, which often undergoviolent collapses anddamage cells indiscriminately.
Note that the ultrasound amplitudes used in medical ultrasound are typically in the
MPa range, while the typical amplitudes in our streaming experiments are below
10 kPa. Nevertheless, we demonstrated pore opening in lipid membranes, and
preliminaryexperimentshave shownthat themembraneofHeLacancer cells canalso
be lysed in the streaming flow near microbubbles. Further tests will determine
whether the pore opening can be gentle enough to allow cell repair and survival. The
effect of low-intensity ultrasound on vesicles and cell rupture indicates that more
controlled experiments are possible in vitro and in vivo. We have shown that violent
bubble collapses are not necessary for the rupture of membranes, and thus
for transfection.

The shear flow is focused on very small volumes because the acoustic streaming
velocity of the bubble decays rapidly as rK3. Consequently, the shear stresses decay
even faster. The focusing turns the energy in a mm-wavelength ultrasound driving
into an incisive tool on the micron scale, effectively establishing microacoustic
effects with low-frequency ultrasound. Micrometre-scale forces can thus be exerted
on small objects such as cells, to push, deform or break them. With microacoustic
tools, new potential applications in microfluidic devices arise, such as a single-cell
manipulation, acoustic probing and permeabilization.
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