Buckling resistance of solid shell bubbles under ultrasound
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Thin solid shell contrast agents bubbles are expected to undergo different volume oscillating behav-
iors when the acoustic power is increased: small oscillations when the shell remains spherical, and
large oscillations when the shell buckles. Contrary to bubbles covered with thin lipidic monolayers
that buckle as soon as compressed: the solid shell bubbles resist compression, making the buckling
transition abrupt. Numerical simulations that explicitly incorporate a shell bending modulus give
the critical buckling pressure and post-buckling shape, and show the appearance of a finite number
of wrinkles. These findings are incorporated in a model based on the concept of effective surface
tension. This model compares favorably to experiments when adjusting two main parameters: the
buckling tension and the rupture shell tension. The buckling tension provides a direct estimation of
the acoustic pressure threshold at which buckling occurs. © 2011 Acoustical Society of America.
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. INTRODUCTION

Bubbles act as powerful contrast agents in ultrasound
echography.' Current models for coated contrast agents bub-
bles incorporate the response of the coating.> ® These models
explore small amplitude vibration, with a linear visco-elastic
response from the spherical coating, subjected to alternating
compressions and tensions because of the radius oscillation.
However, the large amplitude vibration regime is of impor-
tance for cases where a non-linear response of contrast
agents is wished in order to discriminate them from the sur-
rounding tissue. In addition to non-linear elasticity,” two
processes can lead to a strong non-linear response: Buckling®
or destruction of the coating.”'”

Buckling was observed in the specific case of lipidic
contrast agents, coated with a single layer (monolayer) of
lipid molecules sitting at the bubble interface. This coating
can lead to peculiar oscillations, named compression-
only,”’12 because only compression is significant while
hardly no expansion occurs; the reason being that lipid
monolayer, one molecule thick, does not undergo in-plane
compression. The bending modulus of the monolayer is very
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small, so it is energetically more favorable to bend the mem-
brane than to compress it.

In the present manuscript, we focus on a different kind
of contrast agents: Bubbles coated with solid membranes,
whose thickness is large in front of molecular components.
These coatings are made of proteins (albumin for instance)
and polymers.'?> Because of their thickness, such coatings
can be described using continuum theories. Contrary to lipid
monolayers, spherical solid shells'* sustain more easily
in-plane compressions, which stabilizes bubbles against dis-
solution.'® This holds for limited compressions though: Con-
trast agents also undergo buckling if the compressive
constraint is large enough. Contrary to lipidic agents that de-
velop very tiny wrinkles around a globally spherical shape,'’
solid shell bubbles display a globally nonspherical shape.

Here we explore the periodic buckling and unbuckling
of these solid shells, thus extending the solid shell models
designed to treat spherical oscillations with a limited ampli-
tude.”® The appearance of wrinkles was reported on bubbles
undergoing dissolution,'® here they occur after buckling in
each sound cycle. The shape of the wrinkles is modeled with
three-dimensional (3D) numerical simulation, and retrieves
the experimental observations thanks to the use of a bending
modulus under the assumption of quasi-static deformation,
while membrane computations'’ usually neglect this bend-
ing to obtain the onset of buckling in a dynamical situation.

We also address the destruction of bubble shells.
Destruction phenomena have been applied successfully to
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image tissue perfusion and perfusion defects, leading to
effective techniques for myocardial perfusion imaging after
intravenous injection. The destruction of gas microbubbles is
the basis of triggered or intermittent imaging methods.'®
Microbubble destruction is found in the destruction-replen-
ishment methods to estimate blood perfusion.'® Extensive
research has also been carried out based on the bubble
destruction mechanism toward drug and gene delivery.?®?!
The destruction of coated microspheres showed to be a
promising method for the delivery of drugs and other active
agents to various organs in the body.?>">* These investiga-
tions opened new perspectives for therapeutic applications
but the use of contrast gas microspheres toward such appli-
cations brings the need for a thorough understanding of the
processes involved in their destruction. In order to select the
ultrasound parameters and the scanning strategies for an
optimal use in drug and gene delivery, understanding the
destruction process is essential.

The manuscript is organized as follows: Sec. II presents
detailed numerical simulations of the buckling of initially
spherical shells, in order to explicit the inner pressure during
compression, as well as the shell shape. Based on these find-
ings, an analytical model for pulsation of the bubble is intro-
duced in Sec. III. The main feature of the model, an abrupt
appearance of buckling or break-up at two distinct thresholds
in acoustic pressure, is presented in Sec. IV. Finally Sec. V
compares these findings with experimental data.

Il. BUCKLING OF A SPHERICAL SHELL:
INNER PRESSURE DURING DEFLATION

A. Numerical methods for the quasi-static simulation
of an elastic surface with bending and compression
moduli

To understand the effect of an applied pressure on a
solid shell we model it by a closed surface, initially spheri-
cal. We present in this subsection numerical simulations of
its 3D shape, when the enclosed volume V decreases
(“deflation”). At the end of this subsection and in Appendix
A we present the link between the two-dimensional (2D) pa-
rameters of the numerical surface and the 3D parameters of
thin shells.

The deformation energy of an homogeneous elastic sur-
face comprises a bending contribution, with a bending con-
stant x, and an in-plane contribution for which, in a linear
approximation, only two parameters are required, e.g. the
compression (or stretch) modulus y,p, and the Poisson ratio
Vop-

For a given volume, the numerical shape is found by
minimizing the integral of the surface energy that writes>

1
E., :J {5 k(cr + ¢ — 2c0)2—(1 —vap)K(c1 — ¢o)
s
1
x(c2 —co) + EEUKUlekl} ds, (D

where the first and second term in the integrand reflect
the bending energy: c¢; and ¢, are the principal curvature,
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co = 1/R, the initial curvature with Ry = (3Vy/4n)"?> the ra-

dius of the initial unstrained sphere, and V|, its unstrained
volume. The first term is associated with total curvature,
while the second is associated with the Gaussian curvature.?
This second term was usually neglected in simulation of
shells, but recent work carried out by the authors pointed out
that it does not vanish for geometries with initial spontane-
ous curvatures, which is the case here. The third term in the
integrand is the in-plane Hookean deformation energy, with
€4 1s the in-plane Cauchy—Green strain tensor, and the non-
zero terms of the 2D  elasticity tensor are
Kiii = ﬁKiijj = ﬁKijij = ﬁ}{m-

A detailed presentation of the numerical method can be
found in Ref. 26. We recall it here briefly. The surface is dis-
cretized in a 2D randomized triangular mesh (made of 4764
nodes) fine enough in front of the topographical changes; then
the volume is decreased by small steps (with a relative volume
decrease of dV/Vy=6.36 x 10~%), while at each step the
shape is evolved, using the finite element freeware Surface
Evolver,?” until a minimization of its energy [given by Eq.
(1)] is reached. Simulations showed that the spherical surface
deforms with different shapes during the deflation that
depends on two non-dimensional parameters: The relative

volume variation % = % and the Foppl-von Karman pa-
0
— 2(1=v2p) 1opR?

rameter> b .

Using these simulations in order to interpret experiments
require to make the link between the 2D parameters of the
model surface (namely «x, y»p, and v,p) and the 3D parameters
of the shell, which are the shell thickness d and the bulk shear
modulus G, assuming the material as incompressible (v = 1/2).

The bending modulus x can be expressed through the
integration of the local compression or elongation of the
incompressible material when the sheet bends, leading to*

1
KZngS. )

The general expression for the compression modulus y,p is
displayed in Appendix A. For an incompressible material, it
leads to

%o =3Gd. 3)

We may now understand why the bending of a very thin
monolayer is energetically favored compared to compres-
sion. One can show that the ratio between out-of-plane
(bending) energy E; and in-plane compression energy E in
a typical deformation®?’ is of the order E,,/Eswk/xzDRz,
revealing the key parameter of the system, tlge non-dimen-
sional Foppl-von Karman parameter y = %, see erratum
of Ref. 26. Then, Egs. (2) and (3) lead to

9
V= —— 4
y (@R “4)

meaning that y~"/? simply reflects the relative shell thickness
d/R. This relation explains why a bending deformation is en-
ergetically more favorable than a compression for thin
shells: E,/E; becomes very small when d/R decreases.
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FIG. 1. (Color online) Numerical simulation of the quasi-static deflation of
an elastic shell (a) V/Vy = 1, (b) 0.85, and (c) 0.48. (d) The inner pressure
when decreasing the volume. Pressure here is non-dimensional by the theo-
retical value for buckling P, = 3G(d/R)>. The continuous line is the predic-
tion from Eq. (5), while the dash-dotted line delimits the wrinkled/axi-
symmetric transition. Here the Foppl-von Karman parameter is y = 16796
and y,p = 1/2, corresponding to d/R = 0.0231.

For the deformations studied here, Poisson ratios are
equal in 2D and 3D (see Appendix A), so that vop =v = 1/2.

B. Deformation modes and the inner pressure

The results from the simulations are now described. Sev-
eral computations are performed for shell with different rela-
tive thickness, which are imposed through the numerical 2D
factor y. The typical behavior of a shell under deflation is the
following. For small deflations the surface keeps a spherical
shape [see Fig. 1(a)]. For higher volume deflations, the shells
undergo a first-order (i.e. discontinuous and abrupt) buckling
transition: An inverted spherical cap appears, making an axi-
symmetrical depression [Fig. 1(b)]. Then, axi-symmetry is
broken through polygonal deformation of the depression [Fig.
1(c)], for small enough values of d/R (typically d/R < 0.1).

The numerical pressure (i.e. Lagrange multiplier of the
volume) is displayed on Fig. 1(d). It is the numerical equiva-
lent of the pressure difference AP,, = P;, — Pex: between pres-
sure P;, inside of the membrane, and the exterior pressure
P.y. This pressure difference follows from the conservation
of mechanical energy during a compression: The increase in
elastic energy is generated by the work of pressure forces on
the membrane, so that dE, = —Pey dV + Piy dV. The pres-
sure is thus inferred by AP,, = OE/OV. Note that this equality
holds because we assumed that no kinetic energy is generated,
which we justify here because the mass of the shell is small
and assumed to have negligible inertia. We will see later that
the mass of fluid around is dominant.

1. Spherical compression

In this deformation mode, the pressure varies rapidly
and can be predicted analytically.
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By considering the energy of a sole in-plane compres-
sion (there is no ﬁrst-order2 bending contribution in this ge-
ometry), Eeq =1 75p (A’TA“) , one gets from AP, = OEq/0V
the over-pressure inside,

Yoo AR

APm:4R_073 (5)

with AR = R — Ry, assuming AR < Ry. In a bulk 3D model,
the integrated contribution of the internal elastic stress over
the shell thickness leads Church? to obtain

d AR

AP, =12G ——.
G R Ry ©)

One retrieves the relation y,p = 3G d obtained in Appendix
A for flat sheets. Numerical data are consistent with this pre-
diction, showing a linear part in Fig. 1 for small amplitude
compressions, with the predicted slope.

2. Buckling

Under compression, the linear variation into the negative
pressure range (meaning a compressive state of the mem-
brane), is limited to a short range. According to Landau and
Lifshitz,*® an elastic spherical shell submitted to a smaller
pressure inside will become unstable and buckle, and this
occurs as soon as the pressure AP,, reaches a critical value of

4 d\ 2
AP, ~ —3G (ﬁ) : (7)

this expression is obtained after replacing the Young’s modu-
lus by 2G(1 +v) = 3G for incompressible material. It corre-
sponds to the pressure at which it is more advantageous to
create a fold rather than compressing the shell. This order of
magnitude is effectively retrieved in numerical simulations,
see Figs. 1 and 2.

2

10

¢ buckling 8
= post-buckling |- 8

AP /G

FIG. 2. Simulation results for the post-buckling pressure APE:’S"b“Ck“"g
(squares), evaluated in the plateau region of Fig. 1(d), as a function of the
relative shell thickness. The continuous line stands for a power-law fit with
Apposi-buckling /GG — 1 193 5 (d/R)**'**% The value of the exponent is in
total agreement with theoretical predictions of post-buckling pressure
derived in Appendix B. For comparison, we also plot the buckling pressure
AP® from simulations (diamonds giving the range where simulation value is
located) and the theoretical prediction (dashed line) from Eq. (7).
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For instance for Albunex(R) contrast agents made with
an albumin shell, G=88 MPa, d=15 nm, R=1 um,**°
meaning APP'Kling ~ 6 x 10* Pa. This pressure is easily
achieved by acoustic means. Solid shell contrast agents are
expected to buckle during insonification if their shell is not
too thick.

After buckling, the bubble shape suddenly departs from
a sphere; the stretching stresses within the shell become
much smaller, while the bending stresses are localized on the
edge of bulge.?” The pressure difference therefore drops con-
siderably and plateaus with volume variation occur as can be
seen in Fig. 1(d). The corresponding value APPost-buckling yy5q
measured at its lower absolute value. (Note that for the shells
thinner than %< 0.0145, a slight re-increase is observed
when AV/V approaches one). It is displayed on Fig. 2 as a
function of d/R, together with the buckling pressure. The
pressures are scaled by the bulk shear modulus
G = §+/13p/Kx which imposes the energy scale. The post-
buckling pressure is much smaller than the buckling pres-
sure, especially for thin shells. For shells with a thickness
smaller than d/R = 1072, the ratio of these pressures is 0.1.
This ratio decreases for smaller thickness, meaning that the
thinner the shell, the lower the remaining pressure after
buckling. Corresponding theoretical calculations can be
found in Appendix B.

3. Wrinkles

At larger compression amplitude, the buckled state
looses its axi-symmetry, and periodic wrinkles appear in the
buckling depression. This post-buckling transition is smooth
and cannot be detected on the pressure itself. The number of
wrinkles W depends on the relative thickness, see Fig. 3.
Actually variations of typically =1 (up to =2 for high W)

Average number of wrinkles

FIG. 3. Simulation of a number of wrinkles hold by the single depression of
a deflating elastic spherical surface, as a function of the relative shell thick-
ness for a thin shell of incompressible material. This number is an average
for important deflations, i.e. when the size of the depression approaches one
hemisphere and before autocontact; practically we averaged for AV/V €
[0.53, 0.76]. Points are dispersed but compatible with the power-law in
(d/R)™""* observed in Ref. 26. Here the line is fit with Eq. (8). Inserted snap-
shots are taken from simulations of shells with 10, 8, 6, and 5 wrinkles, from
left to right.
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wrinkles are observed in the course of compression, so the
average number of wrinkles has to be considered.

The number of wrinkles approximately follows an evo-
lution of the type,

A\ 12
<W>:0.83(E) . 8)

This power-law can be retrieved with the consideration that
V/dR is the typical size for the deformations of a thin shell.>”
On an equator of length proportional to R, the number of
wrinkles of size ~ \/ﬁ scales like \/R/d.

At re-inflation the number of wrinkles diminishes by the
coarsening of neighbor wrinkles.

lll. DYNAMICAL MODEL FOR LARGE AMPLITUDES
OSCILLATIONS

We extrapolate the numerical results obtained for the
static case, to describe dynamical oscillations of bubbles. It is
reasonable here because the material equilibrates at the speed
of sound in the elastic material (typically of several thousands
of meters per second) which is very large compared to the
bubble velocity (wR,), of the order of meters per second).

A. Effective membrane tension: Negative at the onset
of buckling and then suddenly vanishing

The presence of the shell accounts for a pressure differ-
ence AP, By analogy with a Laplace pressure, we rather
express the solid shell contribution as due to an effective
membrane tension a,,(R) = RAP,,/2 such that

_ 204(R)
AP, = R ©)

The advantage is that the membrane tension reflects the aver-
age of plane stresses within the membrane, which will be
useful when searching for a criterion for shell rupture. This
tension depends on the bubble inflation or deflation (here
monitored by R with respect to a rest radius R), and can
even become negative sign of compression state when the
volume decreases.

Inspired by the numerical simulation mentioned in Sec.
II, we model the solid shelled bubble response under several
states: Elastic, buckled (axi-symmetric or wrinkled), to
which we add also the ruptured state. The model is summar-
ized in Fig. 4. The main difference from the lipid shell
model'! is that the buckled state occurs after a negative
membrane tension, while in the lipid shell model it occurs as
soon as the membrane tension starts to become negative.

In the elastic state, the membrane tension varies (thick
line on Fig. 4) as indicated by Egs. (5) and (9) along

AR
on(R) = 2X2DR70~ (10)

For the instance of Albunex(R) contrast agents we find y,p
= 3G d = 4 N/m. This linear relation holds here because we
are considering small amplitude variations in this regime.
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FIG. 4. (Color online) Model for the shell membrane tension under large vol-
ume variation. As soon as the surface tension is negative enough to reach the
buckling value (full circle), buckling occurs (large arrow) and the membrane
tension vanishes (thick dashed line). The elastic state is recovered when the
volume gets back to its rest value (open circle). When the rupture point is
reached (cross), membrane tension saturates to the water value (dash dotted).

The buckling occurs abruptly when the tension is low
enough. As soon as the membrane tension becomes negative
enough to reach the critical buckling value
1 d

ot~ — o (11)

the shape becomes unstable and buckles. The critical buck-
ling value we get for Albunex is ¢2"Kin¢ ~ —0.01 N/m. It
corresponds to a relative compression of only (AR/R)™<*!in¢
= —1/12 x d/R, (around 0.1% for Albunex). The membrane
tension fades out to a much lower value when the bulge in-
dentation grows, as observed on simulations (Fig. 2) and
computed theoretically in Appendix B. Here we therefore
assume that membrane tension instantly vanishes at buckling
(thick dashes on Fig. 4).

The membrane stays on this state, as long as it reaches
again the stress free point, where the shape becomes spheri-
cal again and where the elastic regime is recovered. Note
that the notion of a bubble radius disappears in the buckled
state with a nonspherical shape: However the bubble volume
stays continuous. For the dynamical equations we will keep
the radius as a variable, and in the buckling state it will have
to be considered as an effective quantity, such as R, = (3V/
41)'7, reflecting the volume and useful to provide an esti-
mate of the average size of the bubble.

On the reverse, if the pressure difference becomes
strongly positive the shell becomes tensed, until it reaches
the rupture state. The material of the shell cannot support in-
finite elongation, it is expected to break apart at a few percent
of positive inflation of the shell area, meaning at a critical
value (AR/Ry)"™™™“P. Indeed material resistance is usually
defined by a maximum deformation amplitude. A positive
peak in surface tension and in bubble radius can reach the
break-up value: At this point a part of the shell opens and a
bare interface of air is exposed to liquid. Being ruptured, the
surface tension is therefore bounded to a saturation value
Owater» Which is the surface tension of the water/gas interface.

Note that the membrane can sustain a positive radius
increase (AR/Ry)™™ P independent of the shell thickness,

J. Acoust. Soc. Am., Vol. 129, No. 3, March 2011

while the maximum radius decrease without buckling is
(AR/R)™"Mne — _1/12 x d/R, [from Egs. (11) and (10)] and
thus proportional to the shell thickness. Considering a har-
monic excitation of small amplitude, the bubble response is
harmonic (sinusoidal) as well with positive and negative ra-
dius excursions of equal amplitudes. Under these conditions,
buckling will occur before rupture if [(AR/R)***™¢| < (AR/
R)P™™ P orif d/R < 12 (AR/Ro)"™**"P. We therefore expect
thin solid shells to buckle before they rupture, and the
reverse for the thick shells.

B. Dynamics of the coated bubble

We then model the dynamics of the pulsation, following
the same line as the model for a lipidic membrane,11 where a
variable tension is introduced in the dynamical evolution for
a free bubble. We nonetheless recall here these equations,
and add the new modeling for the effective tension.

From the balance of normal stresses at the interface,
assuming a polytropic gas law and assuming a modified
Rayleigh—Plesset equation for the hydrodynamic pressure,
we obtained,

5 3.0\ 206m(Ro)\ [ R 3 3K .

20,,(R,state) 4uR  4KR
—py - T T T
R R R

— P (1), (12)

with R, the equilibrium radius of the bubble, with no mem-
brane stress, P, the ambient pressure, P,.(f) the acoustic
pressure, and ¢ the velocity of sound in the liquid. Dissipa-
tion is introduced with p the surrounding liquid viscosity and
k the surface dilatational viscosity from the shell. Note that,
contrary to Church? we neglected the surface tension of the
inner and outer solid interfaces (their value been negligible
in front of the buckling and rupture tension): All the capil-
lary effects are included in the effective membrane tension.

As developed in the previous subsection, the membrane
tension o,,(R, state) depends upon the radius and upon the
actual state (elastic, buckled, and ruptured) with,

2%21)% if elastic, Ryuckling <R <Rpreak-up
an(R)=<0 if buckled
Owaer  if Tuptured and R>Ryypured

The transition between the elastic and the buckled state
occurs as soon as R < Ryyckiing- This change is reversible:
Unbuckling occurs as soon as R > R,. The transition to the
property of ruptured state is not reversible and occurs as
soon as R > Ryreak-up-

IV. MODEL RESULTS

A. Abrupt appearance of compression-only behavior

Increasing the acoustic pressure, the bubble oscillates
symmetrically in the elastic mode, until it buckles: The bub-
ble oscillation becomes suddenly larger in the compression
phase but not in the expansion phase leading to the
“compression-only”'? mode, see simulation of the dynamical
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] FIG. 5. Bubble response to repeated 2 MHz
pulses, with an increasing acoustic pressure:
. Elastic at 0.8 x 10° Pa, buckled at 1.5 x 10° and
ruptured at 2.7 x 10° Pa. The shell parameters
are Ro=1 um, yop=1 N/m, K,=7.2x10"°
N, while the buckling tension is gbueMine =
—0.05 N/m and the rupture tension is
gbreakup = (.2 N/m.

0.4 0.6 0.8 1 1.2 1.4 1.6
time (s)

equation in Fig. 5. A strong positive radius excursion then
appears above a critical pressure. In this new state, the bub-
ble oscillates as a free bubble, as the shell is ruptured.

The different behavior is well monitored by plotting the
ratio of the positive excursion peak to the negative excursion
peak, AR"/AR™ (see Fig. 6). Elastic oscillations do not lead to
a significant asymmetry (AR"/AR™ =~ 1), while compression-
only modes lead to smaller ratios (AR"/AR™ < 1), inversely
to the ruptured state: The non-linear behavior then favors pos-
itive excursions of the radius, as for standard large pressure
Rayleigh—Plesset dynamics of a free bubble (AR*/AR™ > 1).

The appearance of compression-only behavior is abrupt
above the threshold (e.g. for an acoustic amplitude of 1 Pa in
Fig. 6). Again, this is in contrast to the model for monolayer
lipidic coatings that did not allow any negative tension, and for
which the transition to compression-only mode was continuous.

B. Comparison of the dynamic and static value for the
buckling pressure

From the dynamical simulations we can try to evaluate
the thresholds for the different regimes and compare them to
the static thresholds described in Sec. III B. The static pres-
sure 2631”“‘““5' /Ry (=1 x 10° Pa) gives a correct estimate of
acoustic pressure at which the elastic state buckles (see Fig.
6). However, the value 263{‘3”]"”" /Ry (= 4 x 10° Pa) does
not provide a correct estimate for the acoustic pressure at
rupture because of the high amplitude oscillations.

Indeed, before buckling the amplitude of oscillation is
low so that P; ~ Py+ P,.(t) (see Sec. Il B) and AP,, = P, —

2 :
1 .
o :
< :
~~ .
+ .
c :

: . x
% 1 2 3 4
P, (Pa) x10°

FIG. 6. Effect of an increasing acoustic pressure on the asymmetry of the
bubble response. Same shell parameters as in Fig. 5.
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P, ~ —P,(t), meaning that the pressure difference across the
membrane is given directly by acoustic pressure. At high
amplitudes, the liquid pressure incorporates dynamical terms,
and has to be written as P; = Py + Pu.(t) + p;(RR +3R?)
+ }L—e.dpg([) R(t). It is not possible to induce the membrane pres-

di
sure directly from the acoustic pressure.

V. COMPARISON WITH EXPERIMENTS
A. Phase diagram

We compare these predictions to the high-speed imag-
ing study’ of polymer based shell contrast agents (PB127
contrast agent from Point Biomedical, a bilayer polymer/al-
bumin shell encapsulating a nitrogen bubble). For a given ra-
dius, contrast agents exhibit different behavior as a function
of pressure, classified in three regimes: (i) non-destruction
zone with oscillations, (ii) transient zones with oscillation
and rupture after several cycles, (iii) destruction zone with
immediate rupture of the shell and release of the gas content.

The shell properties in the previous model can be
adjusted to obtain the buckling transition (crosses on Fig. 7)

j o " R
25 O Ruptured T

Buckled g '
L+
2r -

T+
— . _++
g 1.5¢ T
=
E 1r Elastic
0.5
0 1 1 1 1
0.5 1 1.5 2 25 3

R (micron)

FIG. 7. (Color online) Phase diagram of the different oscillation behavior.
Thick lines: Experimentally measured on polymer contrast agents’ bounda-
ries for the onset of transient zone (first thick line when increasing pressure)
and the onset of immediate rupture (second thick line). Symbols: Numerical
prediction, the shell parameters being adjusted to fit the measured bounda-
ries, with the onset of buckling (crosses) and the onset of rupture (circles).
The static buckling pressure 2¢6%°°Klin¢ /R, (first dotted line when increasing
pressure) provides a good approximation of buckling, while the static rup-
ture pressure (second dotted line) is overestimating the dynamical value.
Shell parameters are y,p = 10 N/m, x, = 7.2 x 10~° N, while the buckling
tension is ¢?'Ki"8 = —1 N/m and the rupture tension is ¢ = 3.5 N/m,

m

under an ultrasound frequency of f = 1.7 MHz.
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and the rupture transition (circles) at the same level as the
experimental transitions to regime (ii) and regime (iii),
respectively. The shape of the predicted curves of the criti-
cal pressure is in very good agreement with the experi-
mental ones, with the transition parameters set to
gtuckling — 1 N/m and ¢®®%% =35 N/m. The model
results are less sensitive on the value of 2D compression
modulus. We nevertheless found an optimum around yp
=10 N/m, meaning a relative radius variation of —5% at
buckling and +17.5% at break-up using Eq. (10), meaning
that the linear approximation for the elastic behavior is
still acceptable.

Note that transition from regime (i) to regime (ii) is not
experimentally defined as a buckling transition. However,
the optical observations reported that buckling allows large
shell deformation that could triggers rupture after several
cycles.

We do not model the fatigue of the material that allows
rupture after several cycles. The obtained value for the rup-
ture tension thus describes the initial properties of the mate-
rial and predicts the immediate rupture only.

B. Wrinkles

A high-speed recording of the shape of the shell previ-
ously studied reveals an interesting pattern during the bubble
compression (see pictures of Fig. 8). The recordings were
performed with the ultra high-speed camera Brandaris®'
under insonification at f = 1.7 MHz, and an acoustic pressure
of 0.3 MPa (mechanical index of 0.22) for a few cycles.
Wrinkles appear around an indentation which is a materiali-
zation of the fact that the surface prefers to fold rather than
to compress. The number of wrinkles that can be observed
suggests that bubbles hold six wrinkles at maximum. Smaller
numbers appear during re-inflation.

The comparison with numerical results presented in Sec.
II B 3 indicates, using Eq. (8), a relative thickness in the
range d/R ~ 0.02.

FIG. 8. Top: Snapshots from high-speed recordings of an encapsulated
polymer/albumin at two moments during an acoustic cycle: (a) in the
inflated state and (b) in buckled state with wrinkles. Bottomml: (c) Numeri-
cal simulation of a fully deflated shell AV/V = 0.759 and (d) a shell under
re-inflation AV/V = 0.234. The shell has a relative thickness
d/R =3/,/7 =0.0385
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C. Other destruction experiments

Rupture experiments of solid shells were also per-
formed by Bloch er al.** with 100 nm thick polymeric
shells of radius 1.45 pum (d/R=0.069). For these thin
shells it is very likely that they buckle before rupture, and
indeed they exhibit a “nonspherical shape” (quoting the
description of Ref. 32). The average number of wrinkles
associated to this shell thickness is four according to Eq.
(8), a number that could be seen in Fig. 3(e) of Ref. 32, a
statement that should be taken with caution because of the
limited resolution.

VI. SUMMARY AND PERSPECTIVES

In this manuscript, simulations of thin elastic shells
showed that the inner pressure difference suddenly drops af-
ter buckling and then plateaus, which is a totally an unex-
pected result allowing very practical simplifications when
modeling the deflation of elastic spherical surfaces. The am-
plitude of the drop in pressure and the appearance of wrin-
kles are quantified.

We translated this behavior in a model with three states
(i) elastic with a finite ability of resistance of shells to com-
pression, (ii) buckled above threshold in compression with a
vanishing pressure resistance, and (iii) finally ruptured when
bubble expansion is too large. We expressed these behaviors
in terms of effective membrane tension rather than pressure,
to stress on the properties of shell.

The oscillating bubble model provides a threshold in
acoustic amplitude for buckling, which can be simply pre-
dicted from the static values. The acoustic threshold for rup-
ture occurs at lower amplitudes than expected from the static
prediction: Indeed the bubbles oscillate violently because of
periodic buckling, and the inertia helps in creating mem-
brane tensions.

The model can be used to describe the experimental
data for the buckling and rupture thresholds. The appearance
of wrinkles is a side effect that we also used to have an esti-
mation of the shell thickness: The thinner the thickness of
the shell, the larger the number of wrinkles that are to be
expected.

Perspectives of this present work include a compari-
son of the model with other shells with different material
properties, in order to confirm the validity of the predic-
tion for the critical buckling pressure. On the theoretical
side, a more precise description of 3D dynamics of the
shape during the oscillations would be helpful to set the
limits of the approximation of a shape independent of the
dynamic model, where only the bubble volume is
modeled.
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APPENDIX A:LINK BETWEEN BULK AND 2D MODEL
ELASTIC PARAMETERS

In the linear approximation, the constitutive relation
between the deformation and stress tensors ( ¢ and &,
respectively) of an isotropic material is the Hooke’s law,*

Lg R
2G 2G1+v

E= Tr(5) 1,

where G is the material’s shear modulus and v the Poisson ra-
tio. For a flat thin sheet, e.g. in the x, y plane, a deformation is
called “longitudinal” when a;, = 0 (Ref. 29). In order to model
such a thin sheet by a surface, we may consider the constraint

-Py 0 O
g = 0 —Pp 0], acting as an isotropic 2D
0 0 0

“pressure,” and compare the deformation energy E /vol, unir. = %
i . 2 .

G : & to the 2D expression: E /gt uwic = 5 %op (5) . This pro-
vides, at first-order, the link between a 2D and a 3D
description,

1+v
= Gd Al
xop =7, 04, (A1)

where d is the sheet thickness. A similar calculation shows
that the equivalent 2D Poisson ratio in such a longitudinal
deformation boils down to its 3D counterpart,

Vop = V.

When the normal stresses cannot be neglected any more
compared to tangential stresses, a correction of dd on the
thickness d has to be considered in this linear model when
linking 2D and 3D parameters. One can show that
od = ﬁ % (Pext — Pint)- The relative error done in Egq.
(13) by considering the deformation as longitudinal is then
%d =v 1% % With simulations indicating APPost-buckling
of the order 0.1APP'in¢ (cf. Fig. 2) and 4 =0.04 as a
maximum value, one sees that this correction, of the order

1% in this paper, is negligible.

APPENDIX B: PREDICTION OF PRESSURE AFTER
BUCKLING

After buckling, an inverted cap appears on the shell.
From the expression of the energy of a small cap [using Egs.
(5) and (6) in Ref. 26 in which we insert d = 3\/2 ], the
model?® leads to e

5/2 —-1/4
A P}]’Jnost-buckling — 3 G<d) / (AV) / ,
4/2 \R 1%

which writes, with 2D parameters,

5 L3 —1/4
APpost-buckling _ E : XED’G A_V /
m 2 R \V

Or, using G o /y3p /K to non-dimensionalize,

ost-bucklin, —1/4
APII’)H t-buckling g / 5/
¢ “\v) 7 -

1238  J. Acoust. Soc. Am., Vol. 129, No. 3, March 2011

On the other hand, it was shown theoretically (respectively
numerically) that the % values at buckling scale with a
power of 3/5 (respectively 0.55) of y (Ref. 26). This leads an
expected variation of APPOst0uckling /G that is a power-law of
d/R with an exponent between 2.2 and 2.25.

When re-inflating the shell after this buckling, a hystere-
sis can be observed which is compatible with the first-order
nature of the deformation, indicated by the pressure
discontinuity.
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