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The vibration of bubbles can produce intense microstreaming when excited by
ultrasound near resonance. In order to study freely oscillating bubbles in steady
conditions, we have confined bubbles between the two walls of a silicone microchannel
and anchored them on micropits. We were thus able to analyse the microstreaming
flow generated around an isolated bubble or a pair of interacting bubbles. In the case
of an isolated bubble, a short-range microstreaming occurs in the channel gap, with
additional in-plane vortices at high amplitude when Faraday waves are excited on the
bubble periphery. For a pair of bubbles, we have observed long-range microstreaming
and large recirculations describing a ‘butterfly’ pattern. We propose a model based on
secondary acoustic Bjerknes forces mediated by Rayleigh waves on the silicone walls.
These forces lead to attraction or repulsion of bubbles and thus to the excitation of a
translational mode in addition to the breathing mode of the bubble. The mixed-mode
streaming induced by the interaction of these two modes is shown to generate fountain
or anti-fountain vortex pairs, depending on the relative distance between the bubbles.
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1. Introduction

The emission of sound waves in a liquid is known to be an efficient way to set a
fluid in motion. In a first mechanism, explained by Eckart (1948), streaming mainly
occurs in the bulk due to viscous attenuation. In a second mechanism, observed even
in low-dissipation fluids, streaming takes its origin near boundaries where velocity
gradients are the strongest and can drive fluid circulations up to the bulk (Westervelt
1953; Holtsmark et al. 1954). In microfluidic geometries, acoustic streaming is often
considered as one way to generate vorticity and subsequent mixing in flows dominated
by viscous forces. To obtain significant flow velocities, strong acoustic sources can be
used, as is the case with bulk acoustic wave resonators or systems involving surface
acoustic waves (Friend & Yeo 2011; Lei, Hill & Glynne-Jones 2014). Alternatively,
the use of bubbles can give rise to intense streaming in the surrounding liquid, since,
when excited at its resonant frequency, the gas/liquid interface of the bubble can
strongly vibrate (Leighton 1994). In the extreme case of collapsing bubbles, the
violent flows generated by the bubble vibration can even damage the neighbouring
surfaces.

† Email address for correspondence: flore.mekki-berrada@espci.org

mailto:flore.mekki-berrada@espci.org
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.289&domain=pdf


852 F. Mekki-Berrada, T. Combriat, P. Thibault and P. Marmottant

Elder (1958), Marmottant & Hilgenfeldt (2003) and Tho, Manasseh & Ooi (2007)
performed various experiments with nearly spherical bubbles attached to a wall
with a finite contact angle. They observed strong microstreaming when the bubble
was excited near resonance, with vorticity affecting particle trajectories at distances
exceeding 10 bubble radii. Longuet-Higgins (1997) explained that intense long-range
vorticity results from the combination of two modes of vibration oscillating out of
phase. These two modes are in their case the main volume mode and the to-and-fro
translation of the bubble centre of mass with respect to the solid surface. In such
mixed-mode streaming, the near-boundary streaming velocity is of the order of
Un,m

s = ✏n✏mR0!d sin(1�n,m), where ✏n,m is the relative amplitude of each mode and
1�n,m is the phase shift between the two modes, and where R0 and !d stand for the
bubble radius and driving frequency. Interestingly, this theory, developed for freely
oscillating spherical bubbles (see Davidson & Riley 1971; Wu & Du 1990; Doinikov
& Bouakaz 2010, for more details), found application in other experiments by Ahmed
et al. (2009a,b, 2013), Wang, Jalikop & Hilgenfeldt (2012) and Wang, Rallabandi
& Hilgenfeldt (2013). In these cases, the bubble sticks out from a slit that extends
between the walls of a microfluidic channel, leading to a semicylindrical liquid/air
interface. Large amplitudes of vibration are obtained when the excitation frequency
corresponds to a perimeter that is a multiple of the Faraday wavelength. These
non-parametric Faraday modes can combine with the resonant volume mode, leading
to ‘fountain’ vortices at low driving frequencies. The near-boundary counter-rotating
‘anti-fountain’ vortices induced by the presence of the channel wall finally take
over the ‘fountain’ vortices on increasing the driving frequency (Wang et al. 2013;
Rallabandi, Wang & Hilgenfeldt 2014). Again, a mixed-mode streaming explanation,
adapted to take into account the peculiarities of the boundary conditions, seemed to
capture most experimental observations.

In the present work, we study the microstreaming that develops around bubbles
squeezed between the two walls of a microfluidic channel and positioned close enough
to interact and give rise to a novel type of mixed-mode streaming. In § 2, we describe
the experimental conditions under which we generate and observe acoustic streaming
from bubbles. We present in § 3 the experimental streaming patterns observed in
various conditions. In order to understand the origin of the different patterns, we
provide in § 4 a theoretical study of the vibration modes that appear for a pair of
bubbles, considering their interaction through the microchannel walls. In § 5, we then
develop a model of mixed-mode acoustic streaming for two near-resonant acoustic
bubbles. Various regimes are then evidenced and reproduced via numerical simulations.
In § 6, we detail the mean flow velocity field in the specific case of two bubbles put
into contact and compare the experiments to the model. We finally conclude in § 7
on some consequences on the control of microscale flows.

2. Materials and methods

2.1. Experimental set-up
A silicone (polydimethylsiloxane, PDMS) microfluidic chip was built using soft-
lithography techniques to produce and study in situ gas bubbles. First, we inject
nitrogen and water in a flow-focusing orifice, producing monodisperse microbubbles.
A commercial dishwashing detergent (Dreft, Procter and Gamble) is added to the
water in order to get a thin wetting film between the channel wall and the bubbles.
In the following, we assume that the resulting liquid has the same density and
viscosity as water and thus will be considered as a Newtonian fluid. With this



Interactions enhance acoustic streaming around flat microbubbles 853

Mode 0 Mode 1 Mode 2

(a) (b)

dD

PDMS

FIGURE 1. (Colour online) (a) Scheme of the experimental set-up (sectional view): two
flattened gas bubbles (white) are confined in a PDMS microchannel (grey) of height
h0 = 25 µm filled with water (blue) and are anchored on micropits of diameter d = 40 µm.
(b) Schematic representation of the first deformation modes (top view of the bubble
contour): breathing mode n = 0, translation mode n = 1 and quadrupolar mode n = 2.

technique, bubbles with radii R0 ranging between 20 and 70 µm are obtained, their
size depending on the liquid flow rate and the gas pressure. After production, bubbles
are released in a wide (w = 2.17 mm) and thin (h0 = 25 µm) channel and flow over
small micropits (40 µm in height and d = 40 µm in diameter) patterned on one side
of the channel walls, according to the technique developed by Abbyad et al. (2011).
As long as the drag force applied by the surrounding fluid is low enough, the bubbles
may get trapped on the micropits. Each bubble enters partially into a hole, leading
to the situation sketched on figure 1(a), and, since d/h0 6 2, its deformation leads to
a decrease of its surface energy (Dangla, Lee & Baroud 2011). With this procedure,
one, two or several bubbles can be stopped or removed at will, with relative distances
set by the micropit arrangement.

Bubble oscillations are then obtained by vibrating a piezo-transducer glued on a
glass bar encased into the PDMS polymer. Because the thickness of the glass bar
is only 1 mm, surface waves (called Lamb waves) are excited on the glass surface.
The length of the glass bar is adjusted in order to get principally a standing Lamb
wave. The acoustic wave then propagates through 150 µm of PDMS before exciting
the bubble. The driving frequency !d is chosen in the range of 50–200 kHz and must
be close enough to the resonant modes of the glass bar and to the bubble resonance in
order to get perceptible oscillations of the bubbles. At these driving frequencies, the
Lamb wavelength exceeds 4 mm. The distance between bubbles is then chosen much
smaller than half the Lamb wavelength. The two bubbles are approximately placed
close to a pressure antinode of the glass bar in order to excite both bubbles with a
comparable amplitude and phase. Because the liquid stuck inside the micropit by the
bubble is extremely confined, no vibration of the gas/liquid interface occurs inside the
micropit: the bubble only vibrates in the channel plane.

Bubble motions are recorded using a fast camera (Miro 310, Vision Research)
connected to an inverted microscope (Olympus, model IX70). Since the real-time
dynamics exceeds the capability of the camera, the acquisition is triggered in a
stroboscopic way, adjusting the camera frequency to slow down the evolution to
5 Hz. With this experimental arrangement, we are advantageously able to observe
bubbles at preset positions while, as later verified, they are free to oscillate in the
channel plane, allowing observations over periods of time that may exceed several
minutes.

Last, the streaming around the bubbles is made visible by adding 3 µm yellow-
green fluorescent microbeads (Fluoresbrite, Polysciences Inc.) into the liquid. The
estimated Stokes number St = ⇢bd2

bUc/µdc (with ⇢b and db the bead density and
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diameter, µ the liquid dynamic viscosity and Uc and dc the characteristic velocity
and distance) stays below 0.1, meaning that these beads are good tracers in the bulk.
Nevertheless, when the beads come into contact with the bubble wall, where the
fluid velocity is maximal and the streamlines narrow, beads can deviate from their
initial trajectory and follow a neighbouring streamline, as shown by Wang, Jalikop &
Hilgenfeldt (2011).

2.2. Video analysis
2.2.1. Particle tracking velocimetry (PTV)

The particle trajectories around the bubbles were analysed using the trackmate
plugin of the Fiji freeware (NIH, USA; see Rasband 2008) and were numerically
processed. The density of tracers was optimized in order to reduce particle–particle
interactions and improve the traceability of the particles. The successive positions
of the beads, projected in the channel plane, were measured over tens of seconds
to obtain significant statistics. Radial and tangential Lagrangian velocities were then
derived from the position measurements of the tracers. We defined a typical mesh
size of dimension 12 µm ⇥ 12 µm, larger than the camera resolution. For each pixel
of this new mesh, we calculated the averaged velocities. In order to minimize the
tracking errors of the plugin, data were filtered by replacing the averaged velocities
of the considered pixel by the average on the closest neighbouring pixels whenever
the first one was more than three times higher than the latter. Velocity values in
empty pixels were interpolated from the neighbouring pixel values using an inverse
distance weighting interpolation with a power parameter of 2. Apart from these two
occasional cases, pixel values were unchanged.

2.2.2. Vibration mode decomposition
In order to understand the link between the streaming observed around the bubbles

and their deformation modes, an analysis of the bubble shape was conducted in
parallel with the velocity measurements. For this purpose, we use for each bubble
the coordinates introduced on figure 1(b). Since the bubbles are confined between
two walls, they vibrate essentially in the channel plane. The contour ⇢(✓ , t) of each
bubble in the channel plane can be decomposed in a Fourier series as

⇢(✓ , t) = R0 +
X

n>0

An cos(!t + �n) cos(n✓ + n), (2.1)

where R0 is the average radius of the bubble, An the amplitude of the mode n, !
its oscillating frequency, �n its temporal phase shift with respect to the phase of the
excitation and  n its spatial phase shift setting the angular orientation of the mode. We
write an(t) = An cos(!t + �n) = Re(Anei!t), the time evolution of the mode amplitude.
In practice, the bubble oscillation can be decomposed into a sum of a volume mode
(also called breathing mode) of amplitude A0 and higher-order modes (called surface
modes). In the following, we will mainly discuss two surface modes: the mode n = 1
describes the to-and-fro translation of the bubble; the mode n = 2 is a quadrupolar
mode where the bubble is elongated alternately in two perpendicular directions. These
modes are schematically represented on figure 1(b).
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(a)

(b)

FIGURE 2. (Colour online) Comparison of the microstreaming generated by (a) a bubble
pair and (b) a single bubble of respective radius R0 = 30 µm and R0 ' 25 µm, acoustically
exited at respectively fd = 104 kHz and fd = 148 kHz. The driving acoustic pressure is
estimated to be around pac = 40 kPa. The flow is materialized by the superposition of
images from a movie recording, showing the successive positions of 3 µm fluorescent
microbeads (white). The arrows materialize the in-plane flow directions. The scale bar is
the same in both panels.

3. Experimental results

3.1. Generation of extended streaming with a bubble pair
An example of the steady streaming observed around a single bubble is given on
figure 2(a). In this example, the driving pressure exceeds the pressure threshold
of the two-dimensional (2D) parametric instability (see Mekki-Berrada, Thibault &
Marmottant 2016). In addition to its breathing mode, the bubble exhibits a parametric
surface mode n = 4 that can be identified by the 2n surface-mode antinodes on the
bubble contour. The successive positions of the fluorescent particles have been
superimposed to highlight the different possible trajectories in the surrounding
liquid. One can distinguish two types of trajectories. The first one is an apparent
back-and-forth motion that seems to occur perpendicularly to the channel plane
and which is restricted to a short region around the bubble (typically one bubble
diameter, here around 80 µm). This trajectory appears even below the parametric
instability threshold and is thus correlated to the volume pulsation. The second
type of streaming appears in the vicinity of the bubble and is associated with the
presence of the surface mode. It is characterized by in-plane vortices that scale like
the surface-mode wavelength. In both cases, the vortices generated by the pulsation
of the isolated bubble are limited in scope.

We found that placing a second bubble close to the first one greatly enhances the
microstreaming. The two bubbles can be simultaneously excited and put in oscillation
in either parametric or non-parametric mode. We show on figure 2(b) stack images of
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(a) (b) (c) (d)

FIGURE 3. Streaming pattern around a bubble pair of radii R0 = 25 µm excited at a
frequency fd = 80 kHz, for bubble distances of (a) D = 50 µm (bubbles are in contact),
(b) D = 150 µm, (c) D = 200 µm and (d) D = 250 µm.

the flow generated by two bubbles at a distance apart of 280 µm and excited below
the parametric instability threshold. Compared to the single-bubble case, we obtained
an extended streaming in the plane of the channel, the extension of which goes up
to 450 µm, forming a quadrupolar-like (‘butterfly’) steady flow oriented along the
inter-bubble axis. The streaming velocities in the vicinity of each bubble are typically
3 mm s�1. The streaming trajectories in the vicinity of each bubble are complex
because they combine the butterfly streaming pattern with the short-range streaming
previously observed on the single bubble.

3.2. Modulation of the streaming intensity and streaming pattern
In the following, we focus on such bubble pairs and the characterization of the
streaming they produce. This involves controlling the experimental conditions and
the physical parameters that affect the bubble vibrations. In practice, by anchoring
the bubbles on micropits, we are able to control their distance. We also checked that
they are still free to oscillate thanks to the presence of surfactant in the liquid that
leads to fully wetting conditions, and thus to a good lubrication with the walls. In
this part, we concentrate on the microstreaming generated at low driving pressure, i.e.
below the parametric instability threshold.

3.2.1. Influence of bubble separation
The influence of the distance on the microstreaming pattern has been qualitatively

investigated, and figure 3 illustrates the main results. When the two bubbles are set
into contact (figure 3a), long-range streaming develops around the excited bubbles. By
increasing step-by-step the distance between the two pinned bubbles while keeping the
same bubble size, the streaming becomes less and less intense (figure 3b–d). When
the distance between the bubbles is much larger than their radii, the out-of-plane
vortices observed on single bubbles reappear and the streaming becomes mainly three-
dimensional (3D).

From these experiments, we see that two bubbles may give rise to long-range
streaming, even when their distance exceeds that of their individual acoustic streaming.
In addition, the vortices they produce seem to be linked to their respective distance D.
This clearly indicates the existence of an interaction distance between the two bubbles.

Rabaud et al. (2011) indeed observed that the excitation of confined bubbles
generates a surface (Rayleigh) wave that propagates on the PDMS walls, resulting
in a radiation force that can be attractive or repulsive depending on the distance
D between the bubbles. The acoustic interaction potential associated to this force is
minimal when D is approximately a multiple of the Rayleigh wavelength. For a typical
surface wave velocity of approximately cR = 30 m s�1, this leads to equilibrium
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FIGURE 4. (Colour online) (a) Fountain streaming around a bubble pair of radii R0 =
35 µm, separated by a distance D = 200 µm and excited at a frequency fd = 50 kHz.
Black arrows represent the direction of the bead trajectories. (b,c) Amplitude an(t) of the
breathing mode (red solid line), the translational mode n = 1 (orange dashed line) and the
mode n = 2 (green dotted line), for the two bubbles. The most excited mode is the mode
n = 1 and is out of phase with the breathing mode, with 1�(1,0) =�1 ��0 '�p/5 for both
bubbles. The orientations of mode 1 are respectively  #1

1 =p for the upper bubble #1 and
 #2

1 = 0 for the lower bubble #2, where the origin is chosen along the x-axis. Therefore,
the translational mode is responsible for the fountain vortices observed at this frequency.

distances that are a multiple of �= cR/fd, ranging from �= 150 to 600 µm using the
previous values of fd = !d/2p (between 50 and 200 kHz). Therefore, the ratio D/�
seems to be one of the fundamental parameters of the bubble pair system, in addition
to the ratio R0/�/ R0fd that quantifies the proximity to the bubble resonance.

In the same paper (Rabaud et al. 2011), it was experimentally shown that the force
magnitude decreases rapidly enough, so that the interaction becomes weak when
the distance between the bubbles becomes more than 1.5�. This can explain the
weakening of the streaming intensity at large inter-bubble distances.

3.2.2. Influence of the driving frequency: analysis of the bubble vibration modes
For two bubbles at a fixed distance, we then varied the driving frequency. Because

the positions of the pressure nodes and antinodes on the glass bar vary with the
frequency, this procedure also causes a change of the amplitude and phase of the
bubble excitation. In some cases, the two bubbles of the pair can even be excited
differently. In the following, we will only discuss the symmetrical patterns that we
observed. This symmetry is a hint that both bubbles are excited in the same way.
For each identified pattern, we studied the time evolution of the mode amplitudes.
Following Longuet-Higgins (1998), the streaming direction depends essentially on the
phase shift difference between the predominant modes. In this way, the phase of the
excitation does not play a role.

The simplest pattern observed around a bubble pair is the fountain pattern (see
figure 4a). This pattern appears experimentally at low driving frequencies and for
small values of the bubble radii and of the distance between bubbles. It consists of
four vortices, two on both sides of each bubble. The microbeads are propelled away
from the bubble along the axis of the bubble pair ex and are then attracted by the
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FIGURE 5. (Colour online) (a) Anti-fountain streaming around a bubble pair of radii R0 =
25 µm, separated by a distance D = 200 µm and excited at a frequency fd = 120 kHz.
Black arrows represent the direction of the bead trajectories. (b,c) Amplitude an(t) of the
breathing mode (red solid line), the translational mode n = 1 (orange dashed line) and
the mode n = 2 (green dotted line), for the two bubbles. The most excited mode is the
mode n = 1 and is out of phase with the breathing mode, with 1�(1,0) = �1 � �0 > 0 for
both bubbles and more specifically 1�(1,0)

#1 =+0.1p and 1�(1,0)
#2 =+0.4p. The orientations

of mode 1 are respectively  #1
1 = p for the upper bubble #1 and  #2

1 = 0 for the lower
bubble #2, where the origin is chosen along the x-axis. Therefore, the translational mode
is responsible of the anti-fountain vortices observed at this frequency.

pair sides along the axis ey. The vibration modes of both bubbles have been analysed.
Their amplitudes are plotted on figure 4(b,c), using the same coordinates for both
bubbles (✓ = 0 on the x-axis). A breathing mode (red solid line) and a translation
mode (orange dashed line) are detected for both bubbles. The quadrupolar mode n = 2
is damped, as well as the upper modes. The temporal phase shift between breathing
and translation is found to be negative.

In the case of higher driving frequencies, and as is the case for large bubble
radii, an anti-fountain pattern comes out (see figure 5a). This pattern is the same
as the fountain pattern, except that the loops are more elongated perpendicularly to
the bubble pair axis and the trajectory orientation is reversed: microbeads are ejected
from the bubble pair sides and come back to the bubble along the pair axis. The main
modes that appear are still the breathing and the translation modes (see figure 5b,c).
The temporal phase shift between those modes is now positive for each bubble.

If the distance between bubbles is identical in both cases with D = 200 µm, in the
first case ( fd = 50 kHz) we expect D to be smaller than half a Rayleigh wavelength
�/2 ' 400 µm, whereas for the high-frequency case ( fd = 120 kHz), we expect D to
be larger than �/2 ' 170 µm. As a result, the average secondary Bjerknes radiation
force (Rabaud et al. 2011) will cause the bubbles to attract each other in the first case
and repel each other in the second case, as can be seen on figures 4 and 5 looking
at the position of the bubble with respect to the micropits (smaller circles inside the
bubbles).

More importantly, this steady attraction or repulsion coincides with the appearance
of a mode 1 on each bubble, which oscillates at the same frequency as the driving
frequency but with a phase lag with respect to the breathing mode that differs between
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Time

FIGURE 6. (Colour online) Schematic representation of the time evolution of a bubble
interface during an oscillation period, with a breathing mode and a translation mode in
phase quadrature: �1 = �0 � p/2, supposing  1 = 0.

the two situations. This is most certainly the result of the oscillatory part of the
secondary Bjerknes force (see Bjerknes 1906; Barbat, Ashgriz & Liu 1999; Harkin,
Kaper & Nadim 2001; Rabaud et al. 2011) exerted from the pulsating neighbouring
bubble, and vice versa, which leads to a direct forcing term. As we measured  #1

1 =p
and  #2

1 = 0, the two bubble translations are symmetric: bubbles attract and repel each
other by oscillating.

Now, considering the temporal phase �n defined in (2.1) for the modes n = 0 and
n = 1, we observe in the case of fountain vortices that each bubble exhibits a negative
temporal phase shift between the breathing and translation modes: 1�(1,0) =�1 ��0 '
�p/5. A non-zero temporal phase shift means that a point located on the liquid/gas
interface of the bubble will describe an ellipse. It is illustrated in figure 6 with a
sketch showing the bubble movement over an oscillating period when 1�(1,0) =�p/2.
For this value of 1�(1,0), the elliptical movement of the bubble side has a maximum
amplitude. Since the orientation of the elliptical trajectory (red arrow) is determined
by the sign of 1�(1,0), it gives a clue as to why the orientation of the trajectories of
figure 5 is reversed for anti-fountain vortices.

This eventually leads to the following interpretation: bubbles are coupled both to
the primary field and to the secondary field of the neighbouring bubbles, leading to
modes that pulsate synchronously but possibly out of phase. This gives rise to some
mixed modes, which, as first introduced by Longuet-Higgins (1997), can enhance
the microstreaming. In particular, the mixed mode between breathing (n = 0) and
translation (n = 1) is typical of a bubble pair and leads to some axial flow symmetry
with respect to the bubble axis. Note that parametric modes, if present, would not
directly couple with the main breathing mode, since their frequency is fd/2 and not fd.

4. Neighbouring bubbles create a translational mode of the bubble

In the following, we propose a theoretical frame to explain the origin of the
translation mode in a bubble pair. Considering the Rayleigh wave emission from each
bubble of the pair, the total external pressure field experienced by one bubble of
the pair is the sum of a primary pressure field pac arising from the piezo-excitation
and the pressure field scattered by the neighbouring bubble psc (see figure 7a). This
scattered field can be written: psc = Re(pscei!dt), where psc =P psc

n cos(n✓ + sc
n ).

As long as the distance between bubbles is much smaller than the Lamb wavelength
in the glass bar, D ⌧ �glass, we can assume that the primary field is homogeneous,
meaning that each bubble of the pair is excited with the same amplitude and the
same phase. We also suppose that both bubbles have the same radius R0 and that
the orientation of the modes is fixed by the direction of the bubble pair. We can
therefore describe bubble contours following (2.1) and considering the orientation of
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FIGURE 7. (Colour online) (a) Schematic representation (sectional view) of the
deformation of the PDMS walls induced by the bubble pair pulsation, leading to the
emission of Rayleigh surface waves. Each bubble generates a scattered field psc that will
act as a source for its neighbours. (b) Coordinates and notation for an oscillating bubble
pair (top view). We consider two flattened bubbles with the same radius R0, located in
x1 = �D/2 and x2 = +D/2. We denote by (r1, ✓1) and (r2, ✓2) the polar coordinates in the
reference frame of the two bubbles.

the mode 1 to be  #1
1 = p and  #2

1 = 0, where the superscript corresponds to the
bubble identification number.

We could show in Mekki-Berrada et al. (2016) that the response of each mode
can be written as a harmonic oscillator response driven by the external field. We
obtained a linearized 2D Rayleigh–Plesset equation that incorporates the elasticity
of the channel walls (via the Rayleigh wavenumber k), linking the bubble vibration
modes to the external pressure. For one bubble of the pair we have

[�M0(R0)!
2
d + K0]A0 = �pac � psc

0 , (4.1)
[�Mn(R0)!

2
d + Kn]An = 0 � psc

n , for n > 1, (4.2)

where Mn(R0) is the effective mass and Kn the effective stiffness of the mode n. The
expressions for these two functions are

Mn(r) = �⇢f

k
H(2)

n (kr)
H0(2)

n (kR0)
for n > 0, 8r 2R+, (4.3)

K0 = 2� p0

R0
and Kn = (n � 1)(n + 1)

�

R2
0

for n > 1, (4.4a,b)

where H(2)
n denotes the Hankel function of the second kind and of order n, H0(2)

n its
derivative (note the following property: H0(2)

0 = �H(2)
1 ), k the Rayleigh wavenumber

k = !d/cR, with cR the velocity of the Rayleigh wave at the channel wall interface,
⇢f the liquid density, � the adiabatic index, p0 the static liquid pressure and � the
surface tension.

Note that the effective mass Mn(R0) is a complex number. Its real part contributes
to the natural frequency of the mode n,

!n =
s

Kn

Re(Mn(R0))
, (4.5)

while its imaginary part results in a 2D radiative damping. The expression for the
associated damping constant is

�rad
n = � Im(Mn(R0))

Re(Mn(R0))
. (4.6)
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This 2D radiation damping is related to the emission of Rayleigh waves that are
caused by the bubble pulsation. For simplicity, we suppose that this 2D radiation
damping dominates the other sources of damping (thermal, viscous, friction at the
walls, 3D radiation) in the case of the volume pulsation n = 0 and the translational
vibration n = 1.

To obtain the bubble pair dynamics, we still need to evaluate the scattered pressure
field psc. This pressure field is due to the Rayleigh wave scattered by the neighbouring
bubble. In the following, we will consider the dynamics of bubble #1.

The axisymmetric pulsation of its neighbour, bubble #2, generates a cylindrical
outgoing wave centred on bubble #2. In the reference frame of this bubble (see
figure 7b for the definition of coordinates), the expression for the scattered pressure
field in the liquid is

psc(r2, ✓2) = ⇢f!
2
d

k
H(2)

0 (kr2)

H0(2)
0 (kR0)

A #2
0 . (4.7)

To express the scattered pressure field in the reference frame (r1, ✓1) of bubble #1,
we write r1 = Dex + r2, where D is the distance between the bubble centres. The
scattered field is then calculated on the wall of bubble #1, at r1 = R0. The expression
that we obtain is developed in terms of ✏R = R0/D ⌧ 1. Considering only terms of
order less than 1 in ✏R we get

psc(r1 = R0, ✓1) = ⇢f!
2
d

k

"
H(2)

0 (kD)

H0(2)
0 (kR0)

� kD✏R
H0

0(kD)

H0(2)
0 (kR0)

cos ✓1

#
A #2

0 . (4.8)

This equation provides the expression for the axisymmetric and monopolar scattered
fields, psc

0 and psc
1 . The multipolar terms of higher order, psc

n>2, are negligible compared
to those two terms, as they are of order n in ✏R. Finally, the axisymmetric pulsation
of bubble #2 behaves like an external excitation source for both the axisymmetric and
translational pulsations of bubble #1.

Using the same procedure, we calculate the scattered pressure field generated by
bubble #1. We finally get a system of two equations governing the axisymmetric mode
dynamics, which can be written in a matrix system as

 
�M0(R0)!

2
d + K0 �M0(D)!2

d

�M0(D)!2
d �M0(R0)!

2
d + K0

! 
A #1

0

A #2
0

!
= �pacI2, (4.9)

where I2 is the identity vector. As the two bubbles have the same radius and are
identically excited, the breathing mode amplitudes of the two bubbles are equal, A #1

0 =
A #2

0 = A0, and (4.9) leads to

A0 = �pac

�[M0(R0) + M0(D)]!2
d + K0

. (4.10)

The breathing mode absolute amplitude A0 has been plotted on figure 8(a) (solid
line) for a bubble radius R0 = 30 µm and a primary acoustic pressure pac = 14 kPa.
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FIGURE 8. (Colour online) Origin of the translation mode. (a) Amplitude A0 of the
breathing mode (solid line) and relative amplitude of the translation mode A1/A0 (dashed
line) for a bubble pair of radii R0 = 30 µm separated by a distance D. The Rayleigh
wavelength � = cR/fd is due to the wall deformation when the bubbles are pulsating. It
is calculated using cR = 40 m s�1 and at a frequency fd = 50 kHz. Secondary resonances
appear due to the interaction of the two bubbles via the deformation of the PDMS walls.
Experimental data are represented by empty diamonds. (b) Amplitude A0 of the breathing
mode. A maximal value is found for R0/�= 0.056 and D/�= 0.67. (c) Temporal phase
shift (in radian) between mode 0 and mode 1 of the same bubble, calculated for two
different bubble radii and frequencies: R0 = 37 µm and fd = 50 kHz, giving kR0 = 0.4
(blue, solid line); and R0 = 25 µm and fd = 120 kHz, giving kR0 = 0.6 (cyan, dashed line),
when they are separated by a distance D. Experimental data are represented by diamonds.
The translation mode of both bubbles is in phase, showing that bubbles successively attract
and repel each other.

Depending on the distance D between the two bubbles, the Rayleigh waves generated
by each bubble will interact constructively or destructively, leading respectively to a
maximum or a minimum of A0.

By changing the two bubbles’ radii, we draw a map of the breathing mode
absolute amplitude A0 with the two varying parameters R0/� and D/�, where � is
the wavelength of the Rayleigh wave in the PDMS wall and is calculated using
cR = 40 m s�1 (see figure 8b). In the case of an isolated bubble, D tends to infinity
and (4.10) leads to a pulsation resonance in R0/�= 0.049. For a bubble pair, a first
maximum is obtained for an inter-bubble distance Dres = 0.67� and a bubble radius
R0 = 0.056�. Secondary maxima appear when D = N�+ Dres, with N an integer.

We can now write the equations governing the translation mode of the two bubbles:

�M1(R0)!
2
dA #1

1 = kR0M0
0(D)!2

dA #2
0 , (4.11)

�M1(R0)!
2
dA #2

1 = kR0M0
0(D)!2

dA #1
0 . (4.12)

Note the positive sign in front of the right-hand term in (4.11) that comes from  sc
1 =

p for bubble #1. Finally, we obtain A #1
1 = A #2

1 = A1, with

A1 = �kR0
M0

0(D)

M1(R0)
A0. (4.13)

The relative amplitude A1/A0 of the translation mode compared to the breathing
mode has been plotted on figure 8(a) (dashed line) for a bubble radius R0 = 30 µm
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FIGURE 9. (Colour online) Conditions for the existence of fountain and anti-fountain
long-range streaming patterns as a function of the reduced radii R0/� and bubble-to-
bubble distance D/�. Filled (empty) symbols correspond to experiments with fountain
(anti-fountain) vortices. Star symbols correspond to bubbles excited above the threshold
of the parametric instability. Blue diamonds correspond to quadrupolar patterns observed
on each bubble of a pair. The lines correspond to isovalues (mm s�1) of the maximal
streaming velocity for a combination of modes 0 and 1 at different bubble radii and
inter-bubble distances (non-dimensionalized with the Rayleigh wavelength �). Light red
(dark blue) regions correspond to the predicted fountain (anti-fountain) regions for the
driving pressure Pac = 14 kPa and a fitted sound velocity cR of 30 m s�1. (See § 5 for
a discussion.)

and a primary acoustic pressure pac = 14 kPa. We find that A1/A0 decreases with the
distance between bubbles, since it is proportional to H(2)

1 (kD), which tends to zero by
oscillating when bubbles move away from each other:

lim
kD!1

H(2)
1 (kD) =

r
2

pkD
e�i(kD�3p/4). (4.14)

In fact, the further the bubbles are from each other, the less they feel the Rayleigh
wave generated by the others. We also reported on figure 8 the measurements of A1/A0
for the experiments shown on figures 4 and 5. They show a good agreement with
the model. Equation (4.13) also gives access to the phase shift 1�(1,0) = �1 � �0
between the breathing and translation modes. Figure 8(c) reports the evolution of this
phase shift with the distance D between bubbles for two different values of kR0 that
correspond to the two experimental conditions of figures 4 and 5. We notice that
the two bubbles have the same phase shift, meaning that their translational motion is
symmetrical to the median plane of the pair. Moreover, we find that 1�(1,0) changes
regularly in sign when the distance D is increasing. The critical distances for which
the phase shift changes its sign are only slightly affected by an increase of the bubble
radius (see the solid and dashed lines). The phase shift measurements are reported on
the figure for the two cases described in figures 4 and 5. They agree nicely with the
model in the case of a fountain streaming pattern but we notice a shift in the case of
anti-fountain streaming patterns.
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Using the reduced parameters R0/� and D/�, we gathered on figure 9 the
experimental conditions (see the symbols) for the different types of streaming that
we obtained by varying the bubble radii, the inter-bubble distance and the driving
frequency. In particular, fountain vortices have been observed for values of R0/�< 0.1
and anti-fountain vortices for larger values of R0/�, whereas the distance between
bubbles must be kept small (D/� < 1) to favour interactions between neighbouring
bubbles. In the limit of bubbles that have been brought into contact (D = 2R0), the
same observations hold. In addition, we distinguished experimental data with bubbles
excited below (circles and diamonds on figure 9) and above (red stars) the threshold
of the parametric instability. In both cases, we can observe long-range fountain
or anti-fountain vortices, which are not related to the presence of surface modes.
Therefore, if surface modes contribute to streaming, their influence is restricted to
short distances, as suggested by figure 2(a).

Last, a Fourier series analysis shows that, in some conditions, the amplitude A2
of the quadrupolar mode is no longer negligible compared to the breathing and
translation modes (see § A.1). With this new mode, a new streaming pattern is
observed, consisting of two large vortices and two small vortices around each bubble
(blue diamonds on figure 9). The two small vortices are located in between the
two bubbles.

5. Mixed-mode streaming theory including bubble interaction

Knowing the amplitude of the bubble vibrations and their phase shift, we now
develop a theory following the approach of Longuet-Higgins (1998) for the 3D
streaming around a spherical bubble and of Rallabandi et al. (2014) for the 2D
streaming around a semi-cylindrical bubble attached to a wall.

In the following, we consider the streaming generated by the vibration of one single
flattened bubble. The streaming flow is assumed to be incompressible. The 2D velocity
field is described by a streamfunction  related to the velocity components in polar
coordinates, ur = (1/r)@✓ and u✓ = �@r , where r and ✓ are the polar coordinates
in the frame associated with the centre of the bubble. Later on, we will distinguish
the two bubbles by replacing r by rj and ✓ by ✓j for the bubble #j (with j = 1, 2).

For small oscillations of the mode k, of relative amplitude ✏k ⇠ Ak/R0 ⌧ 1, we
develop the Navier–Stokes solution in ascending orders of ✏k. Up to the second order
we have

 =
X

k

✏k 
(k)

1 +
X

m,n

✏m✏n 
(m,n)

2 + o(✏2
k ), (5.1)

where  (k)
1 is the linear oscillating solution and  (m,n)

2 the nonlinear part with a non-
zero continuous part h (m,n)

2 i that thus contributes to the steady streaming.
The first-order  (k)

1 satisfies the vorticity equation,

@1 
(k)

1

@t
= ⌫12 

(k)
1 , (5.2)

where 1 is the Laplace operator.
The boundary conditions at the bubble interface are the continuity of the normal

velocity and a vanishing tangential component of the stress:
1
r
@✓ 

(k)
1 = R0!d cos(k✓)ei!dt,

@2
r 

(k)
1 � 1

r
@r 

(k)
1 � 1

r2
@2
✓  

(k)
1 = 0,

9
>=

>;
on r = R0. (5.3)



Interactions enhance acoustic streaming around flat microbubbles 865

Note that the assumption of free slip may not be appropriate. In fact, it was
observed in some cases that the surfactant could form a flexible skin at the bubble
interface (Elder 1958). In that case, no-slip boundary conditions should be considered,
corresponding to the continuity of both normal and tangential velocities:

1
r
@✓ 

(k)
1 = R0!d cos(k✓)ei!dt,

�@r 
(k)

1 = 0,

9
=

; on r = R0. (5.4)

Depending on the concentration of surfactant, we might be closer to one case or
the other. In both cases, we look for a solution  (k)

1 / R2
0!d sin(k✓)ei!dt. The vorticity

equation can also be written as

(r2 � ↵2)r2 
(k)

1 = 0, (5.5)

where ↵ = (1 + i)/� and � = p
2⌫/!d is the thickness of the oscillatory ‘Stokes

layer’. The modified Bessel equation (r2 � ↵2) 
(k)

1 = 0 has the following solutions:
the exponentially increasing solution Ik(↵r) and the exponentially decreasing solution
Kk(↵r). As  

(k)
1 should tend to zero at long distance, only the modified Bessel

solution of the second kind Kk(↵r) remains. Laplace’s equation r2 
(k)

1 = 0 can be
solved using the separation of variables method, leading to solutions in 1/rk. Finally,
we have

 
(k)

1 = R2
0!d

⇣ck

rk
+ dkKk(↵r)

⌘
sin(k✓)ei!dt. (5.6)

Using the two boundary conditions, we finally get the values of the constants:

ck = Rk
0

✓
1
k

� dkKk(↵R0)

◆
(5.7)

and

dk = 2(k + 1)

(↵R0)2Kk�2(↵R0) � 2k↵R0Kk�1(↵R0)
for slip boundary conditions,

dk = 1
↵R0Kk�1(↵R0)

for no-slip boundary conditions.

9
>>=

>>;

(5.8)

In the following, we will consider only the case of a free slip at the bubble interface.
The continuous (time-average) part of the second-order terms also satisfies the vorticity
equation, which reduces in this case to

12h (m,n)
2 i = �1

⌫

*
1
r
@( 

(m)
1 ,1 

(n)
1 )

@(r, ✓)

+
, (5.9)

where (@( f , g)/@(r, ✓)) is the Jacobian determinant and h i denotes the time
average. The right-hand term of (5.9) derives from the Reynolds stress, which is
defined as the mean value of the acoustic momentum flux and is known to force
the acoustic streaming (Lighthill 1978). We now introduce ⌘ = (r � R0)/� as in
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Longuet-Higgins (1998). As � ⌧ R0, we can use the asymptotic form of Kk and its
derivatives. The detailed calculation is proposed in Rallabandi et al. (2014) and shows
that (5.9) gives rise to particular solutions that are proportional to (�/R0)

2e�(1+i)⌘.
Thus, the only solutions of order zero in �/R0 are the homogeneous solutions of the
biharmonic equation. They are called Michell solutions, and if we only keep terms
that decrease with the distance, we get

h 2i =
1X

k=1

ek

rk
sin(k✓) +

1X

k=3

fk

rk�2
sin(k✓), (5.10)

with ek and fk constants to determine.
One should add the Stokes drift component  d to get the Lagrangian streamfunction

describing the motion of particles:

 L =
X

m,n

✏m✏n(h (m,n)
2 i + 

(m,n)
d ). (5.11)

The Stokes drift satisfies the following equation (Raney, Corelli & Westervelt 1954):
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1 ) dt
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+
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�
. (5.12)

Using (5.8), and considering only terms of order zero in �, we finally get

 
(m,n)

d = 1
2

R2
0!d

✓
R0

r

◆m+n+2

sin(�m � �n) sin((m � n)✓). (5.13)

The Lagrangian streamfunction must satisfy the following boundary condition at the
bubble interface:

1
r
@✓ L = 0 on r = R0. (5.14)

This last equation allows us to set the coefficients ek and fk of the Michell solutions
for the streaming h 2i in (5.10), and to obtain the Lagrangian streamfunction.

We evaluate this streamfunction (keeping only terms of order zero in �/R0) for two
sets of mixed modes, as follows.

(i) When the bubble exhibits a mode m = 0 and a mode n = 1, we get

 L = 1
2

A1A0!d

"✓
R0

r

◆3

� R0

r

#
sin(�1 � �0) sin(✓). (5.15)

The decay of the streamfunction at long distances is thus weak, scaling in r�1,
meaning that velocities decrease as r�2.

(ii) When the bubble exhibits a mode m = 0, a mode n = 1 and a mode n0 = 2, we
get

 L = 1
2

A1A0!d

"✓
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r

◆3

� R0

r

#
sin(�1 � �0) sin(✓) + O

✓
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◆2
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sin(�2 � �0) sin(2✓). (5.16)
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FIGURE 10. (Colour online) (a) Streaming pattern around a bubble pair in contact. We
consider two angular sectors respectively centred around ⇥ = 0 (dashed delimited orange
sector) and ⇥ =p/4 (dotted delimited cyan sector). The origin of the sector is the middle
in between the bubble centres. (b) Simulation of the streamlines around a bubble pair
in contact (D = 2R0) exhibiting a breathing and a translation mode. We assume here the
additivity of the streamfunctions of the bubbles. Black arrows show the predicted direction
of the flow in the case of a negative 1�.

According to these equations, one can now obtain the amplitude of the streaming
velocities. Deriving (5.15) gives for the maximum velocity at the bubble interface:

Vmax = A0A1

R0
!d sin(�1 � �0). (5.17)

Now, depending on the sign of �1 � �0, the prefactor of the streamfunction  L will
be either negative for the bubble located in x = +D/2, leading to fountain vortices,
or positive, leading to anti-fountain vortices. The full phase diagram is represented on
figure 9, where we show the isovalues of the maximal streaming velocity as a function
of the reduced radii R0/� and bubble-to-bubble distance D/�. The plot corresponds
to a driving pressure pac = 14 kPa, and a sound velocity cR of 30 m s�1, leading to
streaming velocities up to 10 mm s�1. The theory and the experiments are in good
agreement for the explored experimental range of bubbles and distances.

6. Detailed study of a fountain pattern: comparison between theory and

experiment

Since the previous model gives an explicit solution for the whole flow field, we are
now in a position for a direct comparison with the experiments. We thus consider the
situation of figure 10(a) of two bubbles in close contact, with the external flow field
materialized by using stack images of the positions of microbeads seeding the flow.

To compare these experimental data with the theory, we have plotted on figure 10(b)
the simulated flow pattern. For this, we considered that, for each single bubble, the
mixed mode between modes 0 and 1 is dominant and is described by (5.15). Then, we
assumed that the total stream field is the superposition of the two fields obtained for
each bubble, i.e.  L = #1

L + #2
L , and that the two bubbles are separated by a distance

D = 2R0 and vibrate identically. From a simple visual comparison, we see that the
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FIGURE 11. (Colour online) Velocity field obtained by performing PTV on the experiment
of figure 10(a). (a) Velocity field and reference frame for the radial and tangential
velocities uR and u⇥ , (b) modulus of the local velocity, (c) value of the radial component
of the velocity, and (d) value of the tangential component of the velocity. Radial and
tangential components are extracted, taking a frame with origin at the centre of mass
of the two bubbles. Raw data obtained from PTV are filtered using a gradient filter and
interpolated using an inverse direct weighting interpolation.

theory captures the major trends of the long-range microstreaming, with the presence
of a global quadrupole oriented along the bubble axis. This experiment validates the
assumption of the additivity of streamfunctions away from the bubble pair, even when
the two bubbles are stuck to each other, and goes in the direction of a mixed-mode
streaming with modes 0 and 1. However, if the similarity between experimental and
theoretical patterns is indicative of the flow symmetries, we still need to measure the
velocity magnitude all around the bubble pair to test the validity of the mixed-mode
model.

The full velocity field is initially obtained from PTV (figure 11a) and reconstructed
in the channel plane, according to the interpolation scheme discussed in § 2.2. Then,
taking a frame with origin at the centre of mass of the two bubbles and oriented
along their centre, we introduce new polar coordinates (R;⇥). In this frame, the radial
and tangential components uR and u⇥ are extracted (figure 11c,d), whereas the total
velocity magnitude is reported on figure 11(b).

To go into a quantitative description, we now derive from (5.15) the components
of the velocity field for each bubble #j (with j being 1 or 2), in the frame of the
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FIGURE 12. (Colour online) Experimental data for (a) uR and (b) u⇥ respectively plotted
for the orange (dashed delimited) and cyan (dotted delimited) zones of figure 10(a). Inset:
logarithmic representation of (a). Reference for the distances are taken at the contact point
of the bubbles (see figure 10). Non-filtered data are used in order to increase the dynamics
of the plot. Two models are also presented: velocity prediction for two bubbles exhibiting
a mode 0 and a mode 1 (solid line) derived from (A 1)–(A 2), and velocity prediction for
a single bubble exhibiting a mode 0 and a mode 2 (dashed line) derived from (A 7) and
(A 8). Supposing that the two bubbles behave identically, the fitting curve gives access to
the value A0A1 sin(1�) = �0.74 µm2 for each bubble and a theoretical radius of 30 µm.
For the empirical one-bubble model, curve fitting leads to an equivalent radius of 55 µm
and A0A2 sin(1�) = �1.24 µm2.

bubble centre:
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◆2

+ 3
✓
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◆4
#

sin(�1 � �0) sin(✓j). (6.2)

Again, the total velocity field is obtained by summing both individual stream fields.
The full expressions for uR and u⇥ , with the origin taken at the mid-point between
the two bubbles, are given in § A.2.

Since both uR and u⇥ are functions of R and ⇥ , and since the model clearly
captured the ⇥ dependence, we now consider only two angular sectors respectively
centred around ⇥ = 0 and ⇥ = p/4 (see figure 10a) to discuss the radial dependence.
Owing to the flow symmetries, we have for these particular angles u⇥(R, 0) = 0 and
uR(R, p/4) = 0, leading to a direct determination of the radial dependence of uR and
u⇥ . The results, averaged over the angular sector, are represented on figure 12(a,b)
and are compared to the best fit based on a mixed mode between 0 and 1 according
to (A 1)–(A 2), assuming that both bubbles have the same vibration amplitudes. The
agreement is excellent with the theory developed in § 5, except maybe for the highest
values of R. Experimentally, the radial velocity is found to decrease in R�3 in the
far-field region around the bubble pair, which corresponds to the prediction given by
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the mixed-mode model (see (A 5) in appendix A). In comparison, the mixed-mode
streaming induced by a pair of spherical bubbles (see Longuet-Higgins 1998) would
lead to a radial velocity decreasing in R�2. Again, the maximum of the velocity
Vmax ⇡ 950 µm s�1 gives an idea of the streaming velocity that can be generated
from two interacting bubbles.

For exhaustiveness, we also compared these measurements with an empirical model
in which we consider the streaming flow of a single bubble of radius 2R0 located at
the centre of the two bubbles and showing a mixed mode between a mode 0 and 2, as
described in § A.3 by (A 7) and (A 8). The result, superimposed on the experimental
data, also provides a very good fit especially far away from the bubbles. This was
indeed expected since such a mode is quadrupolar in nature and since two bubbles in
close contact have strongly coupled pulsations and can be seen as a single pulsating
object.

7. Conclusions

We have shown that two freely pulsating bubbles in a confined geometry can
generate intense streaming, which results from a unique combination of large vibration
amplitudes of individual bubbles and additional higher-order modes resulting from
bubble interaction through surface waves in the microfluidic channel. We have
developed a theory of mixed-mode streaming for two interacting confined bubbles.
The streaming velocities are found to be proportional to the amplitude of the modes
that are excited, and also to the sine of the relative phase of the two modes that
are involved. In the case of the semi-cylindrical bubbles studied by Wang et al.
(2013), bubbles are anchored to the channel side wall, which allows the appearance
of non-parametric shape modes that can interact with each other. For freely oscillating
cylindrical bubbles, shape modes are parametric and thus oscillate at !n = !d/2. As
two successive parametric shape modes cannot appear at the same time, they do not
produce long-range streaming. However, as the contour of the cylindrical bubble is
not anchored, shape modes can rotate, leading to more complex trajectories close to
the bubble wall. The use of these rotating modes could lead to more efficient mixing
around the bubbles. As a perspective one can imagine a generalization of the previous
mechanism to study the collective properties of a large number of interacting bubbles,
and its application to mixing for instance. This approach is currently under progress.
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Appendix A

A.1. Higher-order modes flow patterns
Eventually, we can tackle more complex flow patterns, as illustrated by figure 13,
which shows two bubbles of large radii R0 = 38 µm separated by 200 µm and excited
with a primary field at high frequency fd = 120 kHz. Whereas anti-fountain vortices
are clearly visible on both sides of the bubble pairs, two pairs of smaller vortices are
also observed between the bubbles. This is a clear evidence of the presence of both
mixed modes combining modes 0 and 1 and modes 0 and 2, with a reduced amplitude
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FIGURE 13. (Colour online) Interaction between the monopole and quadrupole modes for
a bubble pair of radius R0 = 38 µm separated by a distance D = 200 µm and excited at a
frequency fd = 120 kHz. (a) Experimental pattern observed around the bubble pair. Black
arrows represent the direction of the bead trajectories. Small vortices appear between the
two bubbles. (b) Simulation of the streamlines around a bubble pair exhibiting a breathing,
a translation and a quadrupolar mode for the same conditions, with the mode amplitudes
A0 = 2 µm, A1 = 0.3 µm and A2 = 0.1 µm and temporal phase shifts 1�(0,1) = +0.3 rad
and 1�(0,2) = +1.9 rad.

of the mixed mode (0, 2) since the amplitudes of the modes decay with the mode
number n. In the current case, the vibration mode analysis allows us to determine
for both bubbles the amplitude of the most dominant modes, A0 = 2 µm, A1 = 0.3 µm
and A2 = 0.1 µm, and their temporal phase shifts, 1�(0,1) = +0.3 rad and 1�(0,2) =
+1.9 rad. Using (5.16) and assuming that the global streamfunction is given by  L =
 #1

L +  #2
L , we can draw the streamlines around the bubble pair by using the experi-

mental parameters (see figure 13b). We obtain a very satisfactory agreement between
experimental and simulated patterns. The conditions for the appearance of this pattern
still need to be investigated. These patterns appear for large bubbles separated by a
distance of approximately half the Rayleigh wavelength (see the blue diamonds on
figure 9). As we can see in figure 13(a), the two bubbles repel each other strongly.
Therefore, the micropits might play a role in the generation of this quadrupolar
streaming pattern.

A.2. Velocity field due to two bubbles exhibiting a mode 0 and a mode 1
Assuming that the streamfunctions for a bunch of bubbles are additive, we can
calculate the velocity field produced by two bubbles by saying  L = #1

L + #2
L . The

expressions for the radial and tangential velocities in the frame of the bubble pair
centre are

uR = �↵1
R0

r4
1

⇢
RD
r2

1
(2R2

0 � r2
1) sin2 ⇥ + (R2

0 � r2
1) cos⇥

�

+↵2
R0

r4
2

⇢
�RD

r2
2

(2R2
0 � r2

2) sin2 ⇥ + (R2
0 � r2

2) cos⇥
�

(A 1)
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and

u⇥ = �↵1
R0

r4
1

⇢
R
r2

1
(2R + D cos⇥)(2R2

0 � r2
1) � (R2

0 � r2
1)

�
sin⇥

+↵2
R0

r4
2

⇢
R
r2

2
(2R � D cos⇥)(2R2

0 � r2
2) � (R2

0 � r2
2)

�
sin⇥, (A 2)

where rj is the distance to the centre of bubble #j ( j = 1, 2),

rj =
r

R2 + D2

4
+ �jRD cos⇥ with �1 = +1,

�2 = �1,

�
(A 3)

and ↵j is the streaming prefactor of bubble #j ( j = 1, 2),

↵j = 1
2 A#j

0 A#j
1 !d sin1�#j. (A 4)

In the particular case of two bubbles having the same amplitude and phase of
vibration ↵= ↵1 = ↵2, we can develop (A 1)–(A 2) in Taylor series far away from the
bubble pair (R � D). We get at first order

uR = ↵

✓
�2DR0

R3
+ DR0(4R2

0 + D2)

R5
+ o

✓
1
R5

◆◆
cos 2⇥, (A 5)

u⇥ = ↵

✓
�2DR0

R3
+ DR0(8R2

0 � D2)

R5
+ o

✓
1
R5

◆◆
sin 2⇥. (A 6)

A.3. Velocity field due to a single bubble exhibiting a mode 0 and a mode 2
In the case of a mixed mode combining modes 0 and 2, the expression for the velocity
components in the frame of the bubble centre are

uR = A0A2

R
!d

"
�
✓

R0

R

◆2

+
✓

R0

R

◆4
#

sin1�(0,2) cos 2⇥, (A 7)

u⇥ = �A0A2

R
!d

"✓
R0

R

◆2

� 2
✓

R0

R

◆4
#

sin1�(0,2) sin 2⇥. (A 8)
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