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Acoustic pulsation of a microbubble confined
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This paper reports an experimental and theoretical study of the dynamics of mi-
crobubbles flattened between the two walls of a microfluidic channel. Using a
micropit, a single bubble is trapped by capillarity at a specific position in the channel
and its oscillation under ultrasound is observed by stroboscopy. It is shown that the
bubble dynamics can be described by a two-dimensional Rayleigh-Plesset equation
including the deformation of the walls of the channel and that the bubble behaves
as a secondary source of Rayleigh waves at the wall interface. Above a critical
pressure threshold, the bubble exhibits a two-dimensional shape oscillation around
its periphery with a period doubling characteristic of a parametric instability. We
report how each shape mode appears, varying the bubble radius and the amplitude
of excitation, and demonstrate that the wall deformation has no significant e↵ect on
their dynamics. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4942917]

I. INTRODUCTION

The acoustic properties of air bubbles in water have received much attention from both experi-
mental and theoretical points of view, whether for the energy that bubbles can release by cavitation1

or for their utility as ultrasound contrast agents in medicine.2 This interest for bubble dynamics is
motivated by the particularly strong response of the bubble to insonication.3 For low ultrasound
intensities, the bubble undergoes an axisymmetric vibration, also called breathing mode, and de-
velops an additional shape instability above a certain intensity threshold of the insonifying field.4
These oscillations are favored by the large di↵erence in acoustic impedance between air and water
that leads to a strong coupling with the external field.

Three-dimensional (3D) microbubbles attached to a channel wall have already proved their
e�ciency in sonoporation applications:5,6 the bubble pulsation induces a transient membrane per-
meabilization of biological cells, allowing the introduction of genes into the cells without the help
of a virus. More recently, Ahmed et al. also showed that horseshoe-trapped microbubbles confined
in a two-dimensional (2D) channel were very promising for mixing applications in low Reynolds
environments.7 Therefore, the potential of confined microbubbles could be of huge interest in both
medical and industrial applications. To the best of our knowledge, an appropriate model describing
the dynamics of confined microbubbles is still needed for a better control of these microfluidic
processes.

In this paper, we propose a detailed study of the dynamics of a microbubble squeezed between
the two walls of a microfluidic channel. Because this bubble is strongly flattened in this microfluidic
environment, it appears as quasi-2D, meaning that its oscillating motion mainly occurs in the plane
of the channel. In order to fix the position of the bubble inside the channel, we have developed a
novel approach inspired by the method of Dangla et al.8 to handle droplets. This allowed the study
of the bubble dynamics under controlled acoustic conditions.

In the first part, we report that the axisymmetric pulsation of such a bubble has a resonance
shifted to the low frequencies, compared to a spherical bubble of the same radius. We propose
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FIG. 1. Experimental setup: Sketch of the microfluidic channel (height h = 25 µm, width w = 2 mm), where a pancake-like
bubble (blue) is excited by the ultrasonic waves generated by the piezoelectric plate glued on the glass bar (green). The liquid
flows along ~e

x

. Zoom window: Expanded view of the bubble (radius R0= 15–75 µm) anchored on its cylindrical micropit
(diameter d = 20–35 µm).

a model based on Rayleigh-Plesset equation, taking into account the deformation of the channel
walls. With this model, we demonstrate that the bubble in fact pulsates as if it was in a small
cylinder of liquid. The characteristic size of this cylinder is determined by the wavelength of the
Rayleigh waves generated by the bubble pulsation. In a second part, we show that for high inten-
sities of ultrasound (⇠30–100 kPa), the acoustic field does not only drive an axisymmetric oscilla-
tion of this quasi-2D bubble, but can also trigger a parametric instability leading to surface mode
vibration. Because the channel is thinner than the wavelength of the surface modes, these modes
are two-dimensional and develop only in the plane of the channel. The amplitude of the modes and
their rotation are analyzed. A phase diagram of each surface mode is sketched, highlighting the
characteristic resonance tongues predicted by the Mathieu equation. Furthermore, we demonstrate
that the wall deformation has no significant impact on the resonance of the surface mode.

II. MATERIALS AND METHODS

A. Experimental setup

The experimental setup consists in a microfluidic device made of two layers of polydimethyl-
siloxane (PDMS, Sylgard 184, Dow Corning) where the PDMS elastomer is mixed with the
cross-linker in a weight ratio of 10:1 and cured at 65 �C for 3 h. The upper layer is composed
of a flow focusing orifice9 connected to a rectangular main channel (height h = 25 µm, width
w = 2 mm), as described in Ref. 10. To introduce ultrasound in the channel, a piezoelectric plate
is glued on a glass bar. This glass bar (4 ⇥ 40 mm) is encased into the upper PDMS layer, about
150 µm above the main channel. Because the wavelength of the sound is of same order as the
thickness of the bar, the Lamb modes11 of the glass bar are excited and a standing wave develops on
the glass surface.

A micropit (40 µm in height, 20–35 µm in diameter) is patterned on the lower layer12 (see
Fig. 1). The two layers are then bonded together by an oxygen plasma treatment (Harrick Plasma),
placing the micropit in front of the glass bar. This geometry is an improvement of the device used in
Ref. 10 since the presence of the pit allows to study bubbles either in motion or at rest at a specific
position in the channel.

B. Methods

Using the flow focusing orifice, monodisperse bubbles are continuously produced by forcing
nitrogen into a solution of water containing 5% of a commercial dishwashing detergent (Dreft,
Procter and Gamble). The surfactant was added to prevent undesired dewetting of the bubbles.
By controlling the air inlet pressure and the liquid flow rate, we could obtain confined bubbles of
various volumes, with radii R0 between 15 and 75 µm corresponding to a bubble shape ranging from
a slightly flattened sphere to a pancake-like shape (0.6 < R0/h < 3, h is the channel height).
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FIG. 2. Snapshots of an anchored bubble pulsating under high amplitude of ultrasound (2 µs exposure, f = 104 kHz). The
pit appears as a white disk behind the bubble. During its growth, the bubble explores di↵erent shape modes directly related to
its radius. The number of peaks corresponds to the most amplified mode for a given bubble radius. (Multimedia view) [URL:
http://dx.doi.org/10.1063/1.4942917.1]

Once released into the main channel, bubbles are advected by the surrounding liquid. If the
drag force is low enough, capillary forces trap the bubble flowing over the pit. As soon as a
bubble gets trapped, the nitrogen pressure is lowered in order to stop the bubble production.
Ultrasound emission is then switched on at a frequency that is close enough to the bubble reso-
nance ( f = 20–150 kHz) but also matches one of the resonances of the glass bar actuated by the
piezo-plate. We then observe the oscillations of the bubble with an inverted microscope (Olympus,
model IX70) and record them using a fast camera (Miro 4, Vision Research).

Interestingly, we observed that, even without ultrasound, the bubble radius grows during the
time of the experiment, since the liquid contains dissolved nitrogen and is always refreshed, thanks
to the liquid flow rate. The growth rate of the bubble radius is typically of 0.1–1 µm/s. This allows
us to explore the bubble vibrations as a function of its mean radius R0 under constant acoustic
conditions.

As the maximal sampling rate of the camera is much smaller than the driving frequency f
of the bubble ( f = 20–150 kHz), a 2 µs exposure time was used to resolve the bubble dynamics.
The piezoelectric voltage source was operated at a frequency slightly higher than f to trigger
the image acquisition in a stroboscopic way and slow down the bubble dynamics down to 5 Hz
(� f = f � N f s = 5 Hz, with N an integer). This gives access to the high frequency dynamics of the
bubble oscillations provided these are periodic, as was separately verified.

C. Image analysis

Utilizing the previous procedure, we can record the overall size evolution and vibration dy-
namics of a bubble over a long time duration (a few tens of seconds), as illustrated in Fig. 2
(Multimedia view) and also access its short time dynamics.

To analyze the shape of the bubble, a threshold has been first applied on the images to identify
its contour. The angular dependency of the radius is extracted for each time step and is decomposed
in Fourier modes,

⇢(✓, t) = R0 + a0(t) +
X

n�1

an(t) cos(n✓ +  n(t)), (1)

where R0 is the sliding average of the bubble radius over a pulsation and can slowly evolve with
the time, an(t) is the amplitude of the mode n, and  n(t) the angular orientation phase of the
mode, taking the x-axis as reference for the angles. In practice, |an| and  n are determined for
each image from the discrete Fourier transform of ⇢(✓, t) made on the angle ✓. Then the rotation of
the mode is extracted from  n(t) by considering the angle of the first peak of the mode n encoun-
tered counterclockwise: ✓n = � n/n. The amplitude an(t) of the mode can finally be recovered. Its
Fourier transform leads to a full description of the bubble shape, and particularly to the fundamental
frequency of the mode !n and its harmonics. Whenever harmonics can be neglected, we simplify
the expression of an(t) in

an(t) = An cos(!nt + �n), (2)

where An is the absolute amplitude of the mode n, and �n its temporal phase. Note that An and �n
may slowly vary during the bubble growth process or a transient regime of the pulsation. For this
reason, we used synchronous demodulation by multiplying an(t) by cos(!nt) in order to get the time
evolution of An and �n.
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FIG. 3. Breathing mode: Rescaled amplitude A0/Amax
0 (a) and temporal phase shift �0��ref (b) of the mode 0 for three

di↵erent frequencies: f = 30, 40, and 50 kHz. For each frequency, a di↵erent range of bubble radii has been explored. A
master curve is obtained by using R0 f as x-axis, with R0 the bubble mean radius and f the driving frequency. The elastic
wall 2D model fit (dashed line) gives access to the velocity of the Rayleigh waves at the water/PDMS interface: cR= 40 m/s.

III. AXISYMMETRIC PULSATION AT LOW EXCITATION

A. Results on bubble resonance

For a given driving frequency f , the vibration of a single bubble anchored on its pit has been
analyzed: at low amplitude of excitation, meaning for a driving pressure less than a few 10 kPa, only
the breathing mode n = 0 gets excited.

Using successive sinusoidal burst signals of duration Tburst = 850 ms with a time interval of 1 s
generated by the piezo-plate, we measured the amplitude A0 and the temporal phase �0 for di↵erent
values of the bubble radius. We repeated this experiment for di↵erent frequencies ( f = 30,40, and
50 kHz), without changing the value of the piezo-voltage (A = 10 V). We plotted the results as a
function of the product R0 f in order to get the master curve shown on Fig. 3. To get rid of the phase
shift induced by the piezo, we chose for each frequency a reference phase �ref to get a match of the
three curves.

We find that the resonance of the cylindrical bubble is obtained for R0 f = 1.5 m/s, which is half
of the Minnaert resonance given by a spherical bubble model. Moreover, the phase shift between
low and high R0 f stays around ⇡/2, instead of the ⇡ shift obtained in the 3D model.13

B. Model for the 2D pulsation of a bubble

The question of the bubble 2D pulsation has been considered theoretically by Prosperetti14

for a bubble surrounded by an incompressible liquid. In the case of an infinite liquid channel,
because of the divergence of the inertial mass of liquid around the bubble, this author used a cuto↵
parameter S for the liquid mass radius. Physically, it corresponds to the situation of a cylindrical
bubble surrounded by a shell of incompressible liquid with a diameter S. In that case, considering
small oscillations around the equilibrium radius R(t) = R0(1 + X(t)), with X(t) = a0(t)/R0 ⌧ 1, the
linearized 2D Rayleigh-Plesset equation is written,

ln
 

S
R0

!
Ẍ +

2p0

⇢ f R2
0

X = � Pac

⇢ f R2
0
, (3)

where ⇢ f is the density of the fluid, p0 the inner gas pressure of the bubble,  its polytropic index,
and Pac the driving acoustic pressure.

The cylindrical bubble is also subject to damping. For a spherical bubble with a radius between
15 and 75 µm, the radiation and thermal damping terms dominate the viscous damping.3 But in a
PDMS microchannel, another radiation damping term can also arise when considering the elasticity
of the walls and the surface wave propagation at the water/PDMS interface generated by the bubble
pulsation. This mechanism sketched in Fig. 4 was already suggested in Ref. 10. In Sec. III C, we
will include the wall deformation to the classical 2D model in order to quantify this 2D radiation
damping and understand the origin of the resonance shift.
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FIG. 4. (a) Schematic representation of the bubble pulsation: the pressure variations in the liquid induce a deformation of
the elastic PDMS walls, the deformation being accentuated here for a better understanding, and generate Rayleigh waves at
the water/PDMS interface with a wavelength �Rayleigh of a few hundred micrometers. (b) Schematic representation of a shape
mode n = 4. The solid and dashed lines correspond to the extrema of vibration of the mode. ⇢(✓, t) is the distance between
the center of the bubble and the periphery of the bubble at a time t . The amplitude of vibration of the liquid away from the
bubble (blue arrows) is vanishing in the angular direction of the nodes (thin dashes), and is maximum at the antinodes.

C. Model for the 2D pulsation of a bubble confined between elastic walls

For simplification, we first assume that the liquid pressure p creates a small deflection on the
elastic walls of the channel,

h = h0 + ↵
p
E

h0, (4)

where h0 is the thickness of the channel at rest, E the Young’s modulus of the PDMS, and ↵ a
geometric parameter.

In the following, we also suppose that the bubble wall pushes the liquid radially outward with
no significant variation in the height of the channel. Thus, the velocity of the liquid around the bub-
ble is close to a parallel plug flow over the channel thickness, meaning that its radial and tangential
components ur and u✓ do not depend on the vertical position z in the channel. Including the vertical
wall deformation, the conservation of mass links the liquid velocity (ur ,u✓) and the thickness h of
the channel as follows:

@h
@t
+

1
r
@

@r
(rhur) +

1
r
@

@✓
(hu✓) = 0. (5)

In addition, the conservation of momentum for small amplitudes of motion leads to an Euler
equation, which is written in polar coordinates,

⇢ f
@ur

@t
= �@p

@r
, (6)

⇢ f
@u✓

@t
= �1

r
@p
@✓

, (7)

where p represents the pressure in the liquid.
By replacing h from Eq. (4) and keeping only first order linear terms in Eqs. (5)-(7), we obtain

a d’Alembert wave equation

1
c2

R

@2p
@t2 �

@2p
@r2 �

1
r
@p
@r
� 1

r2
@2p
@✓2 = 0, (8)

where cR = (E/↵⇢ f )1/2 is the velocity of the surface waves generated by the liquid pressure
in the channel. These waves are usually called Rayleigh waves and their velocity is written:
cRayleigh ' �

p
G/⇢ f , where G is the shear modulus of the material with a prefactor � in the range

0.87-0.95, depending on Poisson’s ratio of the material.15 In the case of a PDMS wall, E = 3G
leading to ↵ ' 3. To summarize, the bubble pulsation induces an oscillatory variation of the liquid
pressure close to the bubble wall. This pressure variation excites Rayleigh waves at the PDMS/water
interface by pressing periodically the elastic wall.
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For a given pulsation !, we can write p = Re(pe j!t). As the bubble is alone in the channel and
its radius is much smaller than the channel width, we can consider that the driving pressure field is
uniform, and because of the axisymmetry of the breathing mode, that p does not depend on ✓. Then
Eq. (8) becomes a Helmholtz equation in cylindrical coordinates,

k2p +
@2p
@r2 +

1
r
@p
@r
= 0, (9)

where k = 2⇡/� = !/cR. The solution for an outgoing propagating wave has the following form:16

p = �0H (2)
0 (kr),

where H (2)
0 = J0 � j N0 is the Bessel function of the third kind, also known as the Hankel function,

and �0 a constant to determine. Superscript (2) of the Hankel function refers to the outward-
propagating wave. It is constructed from the Bessel functions of the first kind J0, and of the second
kind N0.

The expression of the radial fluid velocity ur = Re(ure j!t) can be obtained from Eq. (6),

ur =
�1

j!⇢f

@p
@r
=

j �0k
⇢f!

H 0(2)0 (kr). (10)

By developing Eq. (10) at r = R0 and writing the bubble oscillation X = Re(Xe j!t), we can
deduce the expression of �0 and get

p =
!2⇢ f

k
H (2)

0 (kr)
H 0(2)0 (kR0)

R0X .

The liquid pressure near the bubble is

pL = p0 + p e j!t + Pac e j!t . (11)

The pressure is also linked to the pressure pg in the bubble with a correction due to capillarity
(Laplace pressure) and a second correction due to viscosity,

pL = pg � pcap � pvis. (12)

The gas pressure in the bubble is given by a polytropic law pg = pg,0(R/R0)�2 ' pg,0(1 �
2X), where  is the polytropic index, around 1.4 for air.

Note that we have here neglected the influence of the micropit. In fact, the bubble pulsation
does not look a↵ected by the pit as long as the bubble radius is larger than the size of the pit:
R0 > (d + h)/2 and as long as a wetting film exists between the bubble and the PDMS wall.

As we are interested in bubbles with a radius larger than 15 µm and acoustically driven at
frequencies smaller than 150 kHz, we are working in a domain where �/R0 ⌧ pg,0 and ⌘! ⌧ pg,0.
Therefore, we can neglect the capillary and viscous contributions in the equation of the breathing
mode.

We finally obtain the pulsation equation for a single bubble by equating two expressions (11)
and (12),

266664⇢ f c
2
R kR0

H (2)
0 (kR0)

H 0(2)0 (kR0)
+ 2p0

377775 X = �Pac. (13)

According to Eq. (13), the pulsation of the bubble depends principally on the product kR0,
which is equivalent to R0 f if the velocity of Rayleigh waves in the PDMS does not vary much
within our frequency range. In Fig. 3, all the data have been plotted using R0 f as x-axis. By fitting
the experimental data with the elastic wall 2D model presented in Eq. (13), a good match is obtained
for the three di↵erent frequencies, when the value of the Rayleigh wave velocity cR is 40 m/s.

Since the typical value of E is 0.8–4 MPa for the PDMS, depending on the age and curing
time of the elastomer,17 the value of the fitting parameter cR leads to an estimate of the geometric
parameter ↵ 2 [0.5 : 2.5], which is not that far from the expected value (↵ ' 3).
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In our experiment, bubbles are small compared to the wavelength, which means kR0 = 2⇡R0/�
⌧ 1. In that case, Eq. (13) can be written,18

266664�!
2 ln

 
�/2⇡

R0

!
+

2p0

⇢ f R2
0
+ j

⇡

2
!2

377775 X = � Pac

⇢ f R2
0
. (14)

The natural pulsation of this equation can be compared to the one of the classical 2D models
(Eq. (3)). For small radii, we have the remarkable result that the cuto↵ length in the classical 2D
model is given by the wavelength � of the Rayleigh wave,

S = �/2⇡.

The bubble behaves as if it was confined in an annulus of liquid whose size scales like the Rayleigh
wave in the PDMS.

Note that Eq. (14) also includes an additional term in the square brackets compared to the clas-
sical 2D model (Eq. (3)). This term corresponds to the 2D radiation damping due to the generation
of Rayleigh waves. Because of this radiation damping, the phase tends to ⇡/2 instead of 0 as R0 f
tends to infinity, so that the total phase shift between low and high values of R0 f is ⇡/2. This is
consistent with the data shown in Fig. 3(b).

To summarize, even for small bubble radii, the Rayleigh wave has to be included in the model.
It modifies both the e↵ective mass of the bubble by adding some confinement around the bubble,
and the radiation damping term. This a↵ects principally the resonant radius of the bubble and the
temporal phase shift of the mode 0 above the resonant radius. The e↵ective quality factor of the bub-
ble resonator finally depends on the parameter kR0: the higher the Rayleigh wave velocity, the
higher the quality factor.

IV. PARAMETRIC INSTABILITY AT HIGH EXCITATION

A. Amplitude and rotation of the bubble shape modes

For higher amplitudes of excitation, the bubble exhibits di↵erent deformation modes, indicated
by the number n of peaks around its periphery. The shapes shown on Fig. 2 (Multimedia view) are
recorded during the growth process of a same anchored bubble, for a total duration of 60 s. We
could generally observe modes going from n = 2 to n = 12.

We analyzed the vibration of each mode. Fig. 5 is an illustration of the time evolution of
the modes 0 and 4 of a bubble with a radius R0 = 24 µm, shortly after switching on the sound
excitation. We first observe the response of a mode 0 characterized by an axisymmetric oscillation
of the bubble and, after several tens of excitation periods, the appearance of the most amplified
mode n = 4. Note that the appearance of this mode 4 takes also many periods.

Moreover, whereas the amplitude of the mode 0 oscillates at the same frequency as the driving
frequency f , the amplitude of the mode n oscillates at a frequency f /2. Indeed, we see in Fig. 5
that the period of mode 4 is twice that of mode 0. More generally, we observe this period doubling
whenever a mode n becomes dominant compared to the other modes n > 0. This is the characteristic
of a parametric instability.

FIG. 5. Time evolution of the breathing mode (top curve) and the most amplified mode n = 4 (bottom curve) of a pulsating
bubble with a given radius R0= 24 µm and excited at a frequency f = 113 kHz. Time is non-dimensionalized with the
stroboscopic frequency.
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FIG. 6. Vibration modes of a growing bubble excited at a fixed frequency f = 104 kHz with a fixed amplitude A= 22.5 V
corresponding to a driving pressure P

ac

' 45 kPa: (a) Maximal amplitude of the breathing mode amax
0 (black line) and

absolute amplitude of each mode |a
n

(t)| as a function of the time, for an increasing radius R0. (b) Orientation ✓
n

/(2⇡)
(revolutions) of the dominant mode n at a given bubble radius R0. A rotation of the mode sometimes appears during the
transition between the modes but also when the mode is stable. The rotation speed is of order 0.5 revolution/s. The grey
zones correspond to uncertainty domains due to the appearance of a new peak during the transition; inset: time evolution of
the bubble mean radius R0.

For longer time scales, Fig. 6 illustrates the results of the same analysis performed on a
steadily growing bubble, covering a continuous variation of radii. For a constant driving frequency
of 104 kHz and a given amplitude of excitation corresponding to a piezo-excitation of 22.5 V,
Figs. 6(a) and 6(b) show the time evolution of the absolute amplitude and of the orientation of
the dominant modes while the bubble radius grows (see inset in Fig. 6(b)). As we are above the
resonance frequency, the amplitude of the breathing mode decreases with the increasing radius, and
thus with the time (see the black line on Fig. 6(a)), as predicted by our breathing mode model. The
absolute amplitude |an | of the dominant modes is obtained using Eq. (1) and is also represented
in Fig. 6(a). It shows that the bubble selects a preferred mode, depending on its radius. When the
radius increases, the bubble accommodates the same mode until a transition occurs toward the next
mode. With the time resolution, we could not see any coexistence of the modes, apart from the
breathing mode. However, the transition from a mode to another one seems to slightly change the
amplitude of the mode 0. Moreover, we notice that the amplitude of each mode decreases with time.

The angular orientation of the most amplified mode, given by ✓n = � n/n, is reported in
Fig. 6(b). It represents the angle of the first peak of the mode encountered counterclockwise. Thus,
for each mode, one can reconstruct the angle of each peak by adding k/n, with k < n (k an integer),
to the angle plotted in Fig. 6(b). The angle of the mode has been unwrapped in order to better see the
rotation. During the transition between two following modes, a new peak appears on the periphery
of the bubble. However, the time resolution does not allow us to determine the precise location of
the appearance of this new peak or observe the rearrangement of the preexisting peaks. Therefore,
grey zones have been added on the figure to take into account this reorientation of the mode due
to this new peak. The amplitude of these grey zones is thus given by 1/n. One could think that the
presence of the pit close to the bubble wall influences the orientation of the surface modes. But the
angle ✓n evolves continuously in Fig. 6(b), meaning that the surface mode is free to rotate, even
when the bubble wall is close to the pit. Most of the time, the rotation occurs during the transition
between two modes. But sometimes, it happens far away from the transition. The angular rotation
speed is typically 0.5 revolution/s and seems to be constant for all the modes. Both directions of the
rotations (clockwise and counterclockwise) have been observed.

By controlling the amplitude of the driving acoustic pressure, we were able to build a phase
diagram of the di↵erent shapes encountered by a quasi-2D bubble, see the symbols in Fig. 7. For all
amplitudes, the bubble oscillates with an axisymmetric mode (n = 0). By fitting the radius evolution
of a0 with Eq. (13), we have access to the Rayleigh wave velocity in the device cR = 44 m/s, and
also to an estimate of the conversion factor between the voltage A applied to the piezo and the
acoustic driving pressure Pac exciting the bubble: Pac (kPa) ' 2 A (V). In addition to this breathing
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FIG. 7. Experimental phase diagram showing the most amplified mode as a function of the bubble radius R0 and the driving
pressure P

ac

(kPa). Experimental data are reported by black crosses whenever the mode 0 is the only mode excited. In
the other cases, the breathing mode is superimposed with a unique surface mode: n = 4 (cyan squares), n = 5 (light blue
triangles), n = 6 (dark blue circles), n = 7 (purple downward-pointing triangles), or n = 8 (mauve diamonds). The colored
dashed lines correspond to the theoretical resonant radius of each surface mode, obtained with Eq. (19) for a surface tension
� = 25 mN/m. Colored domains correspond to the theoretical domains of each surface mode, the mode number being written
in each domain. They are obtained with Eqs. (22) and (23), with a Rayleigh wave velocity cR= 44 m/s, a surface tension
� = 29 mN/m and a damping constant � = 1.9⇥105 s�1. The black domain corresponds to a zone where only the mode 0 is
excited. In the colored areas, both the breathing mode and a unique shape mode are excited.

mode, starting above a certain acoustic threshold, the bubble undergoes the shape instability. The
amplitude of the threshold varies with the bubble radius, showing a minimum for the mode n = 5, at
a radius clearly above the theoretical resonance radius of the breathing mode Rres

0 = 15 µm.

B. Model for the natural pulsation of the modes

For small amplitudes of oscillations (a0 ⌧ R0), we now perform the same analysis as for the
breathing mode, but this time to describe surface modes. Considering only a nonrotating amplified
mode n, the bubble radius is written as ⇢(✓, t) = R(t) + an cos(n✓), with R(t) = R0 + a0(t), according
to Eq. (1). The researched solution p now depends on ✓. The solution of Eq. (8) for an outgoing
propagating wave has the form,

p = �nH (2)
n (kr) cos(n✓), (15)

where H (2)
n is the Hankel function of order n19 and �n a constant to determine. From the Euler

equation (Eq. (6)), we obtain the radial fluid velocity,

ur =
�1

j!⇢ f
@p
@r
=

j
⇢ f!

�nkH 0(2)n cos(n✓).

We notice that the velocity of the liquid vanishes when the angular direction is that of the surface
nodes (see Figure 4(b)).

At the bubble surface, this velocity should be equal to the bubble wall velocity ur = Ṙ +
ȧn cos(n✓): this enables to find the constant �n. The total liquid pressure (see Eq. (11)) expressed at
the bubble surface is thus written,

pL = p0 +
⇢ f!2

k
H (2)

n (kR0)
H 0(2)n (kR0)

an cos(n✓)e j!t + Pac(t). (16)

It is also linked to the gas pressure by the Laplace equation with an interface curvature that
is the sum of the polar curvature polar = |⇢2 + 2(@✓⇢)2 � ⇢@2

✓ ⇢|/(⇢2 + (@✓⇢)2)3/2 in the plane, and
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of the transverse curvature in the thickness, trans = 2/h. Thus, we can also write the total liquid
pressure as

pL = pg �
�

R0
� (n � 1)(n + 1) �

R2
0

an cos(n✓) � 2�
h
+ pn,vis. (17)

Note that surface tension terms are not negligible when considering the modes. In the follow-
ing, we drop the viscous terms for simplicity.

We obtain the dynamics of the modes from Eqs. (16) and (17),
266664
⇢ f!2

k
H (2)

n (kR0)
H 0(2)n (kR0)

+ (n � 1)(n + 1) �
R2

0

377775 an = �pext
n ,

where pext
n is linked to the non-uniformity of the acoustic field, here assumed to be 0.

The natural frequency of the mode is thus

!2
n =

�kR0

Re
✓
H

(2)
n

(kR0)
H
0(2)
n

(kR0)

◆
(n � 1)(n + 1)�

⇢ f R3
0

. (18)

In our experiments, the maximum value of kR0 is 0.8. For small bubbles with respect to
the wavelength (kR0 ⌧ 1), the first factor on the right hand side of Eq. (18) tends20 to n and
consequently the natural pulsation tends to

!2
n = n(n � 1)(n + 1) �

⇢ f R3
0

, (19)

which is the natural pulsation of the mode n in the classical 2D theory.21

To summarize, the natural pulsation of the shape modes has no specific dependence on the
channel-wall elasticity. In the opposite, the breathing mode always depends on the wavelength
of the Rayleigh waves, even for small values of the bubble radius. Assuming that there is no damp-

ing, the resonance of the parametric mode will occur when Rres
n =

✓
n(n � 1)(n + 1) �

⇢
f

(!/2)2

◆1/3
,

since the driving pulsation ! is fixed and equals 2!n. The theoretical resonant radius Rres
n of each

surface mode has been indicated in Fig. 7, for a surface tension � = 25 mN/m. They show a good
agreement with the experimental resonant radii obtained at all driving pressure.

C. Model for large amplitude oscillations

At large amplitudes of oscillations, the analysis becomes very complex if we keep considering
the channel-wall elasticity. We will thus remain in the case kR0 ⌧ 1 and assume that the channel
walls are rigid. In this case, the oscillation flow field around the bubble in 2D can be described by
the potential field,

' = ṘR ln(r/R0) �
X

n�1

bn

rn+1 cos(n✓),

where bn is a dimensional coe�cient to determine. The velocity field v = r' has a radial
component,

ur =
ṘR
r
+ (n + 1)

X

n�1

bn

rn+2 cos(n✓).

From the boundary conditions (Eq. (1)), we obtain the coe�cients bn as a function of an: bn =
ȧnRn+2/(n + 1). Neglecting dissipation for simplicity, the dynamics is obtained by writing the
Bernoulli equation that provides the pressure,

pL = p0 + Pac(t) + ⇢ f
"
@'

@t
+

1
2
(r')2

#S
R

, (20)

with S � R0.
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We use as before the fact that pressure is given at the interface by the Laplace law in Eq. (17),
which closes the problem. Writing the dynamics of each bubble mode, we arrive in the case of small
shape oscillations (an/R0 ⌧ 1) at

än + 2
Ṙ
R

ȧn +

"
!2

n � (n � 1) R̈
R

#
an = 0. (21)

Following Ref. 22, we introduce a new variable cn = anR/R0. For a sinusoidal pulsation of the
radius, R = R0 + A0 cos(!t), we get to the first order,

c̈n + !2
n

2666641 + n
A0

R0

 
!

!n

!2

cos(!t)
377775 cn = 0, (22)

which is a Mathieu equation. This kind of equation is known to have, amongst others, unstable
solutions with period-doubling,23 the varying parameters being in the case of Eq. (21): !n and
h = n A0

R0
( !
!

n

)2. These solutions become unstable above a threshold given by ht = 2
����1 �

⇣
!

2!
n

⌘2����.
Thus, one needs to add damping terms in Eq. (22) in order to get a nonzero threshold at ! = 2!n,
as observed experimentally. If we add a damping term �ċn in Eq. (22), the instability threshold then
becomes

ht = 2

vut 2666641 �
 
!

2!n

!2377775
2

+
!2�2

4!4
n

. (23)

Using Eqs. (13) and (19) to link the two parameters !n and h to the experimental parameters R0
and Pac, the theoretical existence domains of each mode have been plotted in Fig. 7, for a damping
constant � = 1.9 ⇥ 105 s�1 and a surface tension � = 29 mN/m. We obtain a pretty good agreement
between these domains and the experimental data. We recover a “Mathieu’s tongue” for each sur-
face mode, the asymmetry of the tongues coming from the fact that !n is proportional to R�3/2

0 . The
theoretical pressure threshold of the mode n = 4 is lower than expected, meaning that the damping
constant � should depend on the bubble radius R0 and the surface mode n.

V. CONCLUSIONS

In this paper, we proposed an experimental and theoretical study of the acoustic response of
a flattened bubble at rest in a microfluidic channel. Such a bubble pinned on a micropit presents
axisymmetric oscillations for reduced sound amplitudes, and a combination of axisymmetric and
shape oscillations above some critical threshold of the exciting field. To understand this, we derived
a 2D modified Rayleigh-Plesset equation taking into account the elasticity of the channel walls.
It is found that the presence of the two confining walls leads principally to a modification of the
breathing mode. More precisely, we show that the radiation damping due to the Rayleigh wave
emission at the water/PDMS interface is responsible for the diminution of the bubble resonance
frequency.

As long as the bubble radius is small compared to the Rayleigh wavelength, the wall deforma-
tion does not a↵ect much the shape modes dynamics, and the general form of the 2D Rayleigh-
Plesset equation is su�cient to understand it. We show that the 2D dynamics of the parametric
shape modes is governed by a Mathieu equation in which a damping term was added to account
for the nonzero driving pressure threshold of the modes. The magnitude of this damping term is too
high to correspond to a 2D radiation damping. To seek for the origin of this damping, a calculation
of the 2D viscous damping could be the object of future studies. Note that Leidenfrost droplets
confined in between two planes also exhibit spontaneous 2D modes,24 but without any parametric
forcing, suggesting a di↵erent mechanism.

In order to give a physical picture of the involved dynamics under 2D confinement, we could
say that the bubble oscillation is partly restricted by the confinement which limits its quality factor
to low values. This may be due to the fact that, though a wetting film separates the bubble from the
walls, the bubble oscillations are limited not only by the liquid inertia in 2D (see Ref. 14) but also
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by some surface wave emission. Thus, from an energy perspective, one may expect that the energy
dissipation does not only occur via the liquid friction or the energy transfer between the breathing
and the surface mode (see Refs. 25 and 26 for a discussion). It also occurs by some surface wave
emission.

In conclusion, we think that we have captured the main dynamics of these flattened bubbles and
highlighted the role of the elasticity of the walls in which they are confined.
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