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Soft intertwined channel systems are frequently found in fluid flow networks in nature.
The passage geometry of these systems can deform due to fluid flow, which can cause
the relationship between flow rate and pressure drop to deviate from the Hagen–Poiseuille
linear law. Although fluid–structure interactions in single deformable channels have been
extensively studied, such as in Starling’s resistor and its variations, the flow transport
capacity of an intertwined channel with multiple self-intersections (a ‘hydraulic knot’), is
still an open question. We present experiments and theory on soft hydraulic knots formed
by interlinked microfluidic devices comprising two intersecting channels separated by a
thin elastomeric membrane. Our experiments show flow–pressure relationships similar
to flow limitation, where the limiting flow rate depends on the knot configuration. To
explain our observations, we develop a mathematical model based on lubrication theory
coupled with tension-dominated membrane deflections that compares favourably with
our experimental data. Finally, we present two potential hydraulic knot applications for
microfluidic flow rectification and attenuation.

Key words: flow-vessel interactions, lubrication theory, microfluidics

1. Introduction

Fluid flow in deformable channels is ubiquitous in biological and man-made fluid
transportation systems. Sufficiently soft channels can be distorted by fluid pressure,
yielding a pressure-dependent flow capacity that has implications for physiological flow
(see, e.g. reviews by Pedley 2000; Heil & Hazel 2011) and is used as an enabling
technology in microfluidic devices (see, e.g. the review by Fallahi et al. 2019). In the
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Figure 1. Fluid flow and elastic deformations can interact in self-intersecting soft channels. (a) Intertwined
silicone tubing filled with a red dye water solution. Pressure p = �p is applied to the inlet, and the outlet
is connected to atmospheric conditions, p = 0. Scale bar = 1 cm. (b) Schematical drawing of the kidney
glomerulus. The glomerulus network (red) is encapsulated in Bowman’s capsule (pink). Arrows indicate flow
direction. (c) Schematic drawing of a self-intersecting channel. The channel portions (i) and ( j) are connected
and overlap each other. (d) Cross-sectional schematic view of the intersection (pink plane in panel c) where (i)
and ( j) intersect; �pm and �pc denote the transmural pressure (i.e. the fluid pressure difference between (i)
and ( j)) and the characteristic elastic pressure, respectively. (e) A sample of strand knots with three, four, five
and six intersections. The sketch in panel (b) is adapted from www.med.libretexts.org.

vasculatures of animals and plants, interaction between fluid flow and elastic channels
is critical in maintaining homeostasis. It is also critical to signal transmission through the
vascular networks of animals (Halpern & Osol 1985; Lautt 1985; Aukland 1989) and plants
(Louf et al. 2017; Park et al. 2021) and to the resistance of trees to drought (Choat et al.
2018; Keiser, Marmottant & Dollet 2022).

In the present work, we are interested in the transport capacity of a single microchannel
that intersects itself (figure 1a) through shared boundaries at one or more locations.
A pressure source drives flow through this otherwise closed hydraulic loop. We denote this
configuration a hydraulic knot. We hypothesize that the flow–pressure characteristics for
a hydraulic knot depend on the number of self-intersections and the knot’s configuration.
Hydraulic knots could potentially have unique hydraulic fingerprints depending on their
topology, which may yield further insight into entangled physiological flows and enable
new microfluidic applications. Our study on hydraulic knots builds upon the extensive
previous work on fluid flow in single deformable channels, which we now briefly review.

Knowlton & Starling (1912) studied pressure-driven flow in a soft tube contained
within a pressurized jacket to investigate blood flow autoregulation in the mammalian
circulatory system. Under certain conditions, the flow rate vs pressure relationship of
the soft tube reaches a plateau in flow rate, at which point the action of increasing
the applied pressure (at a specific jacket pressure) no longer yields a larger flow rate
(Holt 1941; Brecher 1952; Bertram 2003). This observed flow limitation is consistent
with the myogenic response in an animal’s circulatory system that keeps the blood flow
at an approximately steady rate (Klabunde 2011). We have recently shown that similar
flow limitation patterns can occur when a long segment of a flexible conduit contacts
itself, thus creating the opportunity for channel compression and the possibility of passive
autoregulation (Paludan, Biviano & Jensen 2023). This system was analogous to Starling’s
resistor experiment (although at comparably low Reynolds number and smaller elastic
deformations), where, instead of channel deformations arising from an externally applied
pressure, the channel deformations arose due to the transmural pressure difference in
the zone where the flexible channel self-intersects. However, the effects of multiple
intersections (figure 1a) have, to our knowledge, not been studied. Many physiological
flow systems, such as the kidney glomerulus capillary network (see figure 1b), involve an
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Hydraulic knots

intertwined densely packed conduit that intersects itself multiple times (Eaton & Pooler
2009). Since the renal perfusion pressure �p ∼ 104 Pa (Navar 1978) is larger than the
glomerular capillary wall elastic modulus E ∼ 103 Pa (Wyss et al. 2011), we speculate
that the soft conduit may self-compress at one or more contact points within the interlaced
network, potentially leading to nonlinear flow characteristics. The human umbilical cord
serves as a pathway for oxygen supply and waste removal from the foetus and is a prime
example of intertwined biological conduits (Kalish et al. 2003). The twisting of the cord
provides it with turgidity, strength and flexibility (Otsubo et al. 1999) while also allowing
for the possibility of interaction between the vein and arteries via elastohydrodynamics
because of their close proximity. Knots on the umbilical cords have been observed that
can, in some cases, restrict placenta–foetus blood flow if the cord tension is large enough
(Chasnoff & Fletcher 1977; Sørnes 2000). In the present work, we will not consider the
effects of channel tension.

Biologically relevant fluid–structure interactions are routinely exploited in microfluidic
applications to enable micro-pumps (Unger et al. 2000; Lee, Bhattacharjee & Folch 2018),
integrated fluidic circuits (Thorsen, Maerkl & Quake 2002; Grover et al. 2006; Leslie et al.
2009) and nonlinear fluidic resistors (Gomez, Moulton & Vella 2017). The microfluidic
chips rely on stacks of flow and auxiliary channels that intersect each other and that can
be pressurized independently. Standard soft lithography and polymer moulding (typically
polydimethylsiloxane (PDMS); see, e.g. McDonald et al. 2000) are used to fabricate the
devices, and the devices typically feature a thin PDMS membrane bonded between the flow
and auxiliary channels. Because the PDMS membrane is relatively soft (Young’s modulus
of E ∼ 1 MPa; see, e.g. Lötters et al. 1997) and thin, its deflection can be controlled via
pressurizing the auxiliary channels, enabling the opportunity to close and open the flow
channels selectively. Because the auxiliary and flow channels are controlled independently,
the analogy to Knowlton & Starling (1912) externally actuated soft resistor is apparent. To
our knowledge, however, comparatively little attention has been given to systems in which
the flow and auxiliary channels are connected.

To investigate the interactions between fluids and structures in a soft intertwined
channel, we will focus on a fundamental unit of a hydraulic knot, which is a soft channel
that intersects itself once (see figure 1c). Our study is limited to the simplest scenario in
which rigid tissue confines the channels, thus only allowing elastic deformations in the
overlap region. This situation is similar to, for example, the confinement of the afferent
and efferent arteries by Bowman’s capsule in the kidney glomerulus (figure 1b). Since
the pressure decreases along the flow direction of the channel, the higher-pressure portion
of the channel (i) can, in principle, compress the lower-pressure portion of the channel
( j). We denote this transmural pressure drop �pm, arising from viscous loss in the loop
that connects i with j. We hypothesize that, when �pm is sufficiently large compared
with the characteristic elastic pressure �pc (i.e. the pressure necessary for deforming the
elastic interface), the channel portion (i) can significantly deform ( j), thus altering the net
flow capacity (figure 1d). For an intertwined channel (such as in figure 1a) with multiple
junctions, one or several junctions can be nested inside each other, meaning that �pm
for one junction may depend on flow in other parts of the network. Topologically distinct
knots may, therefore, have unique hydraulic signatures. This paper aims to elucidate the
link between the flow rate and the pressure for a hydraulic knot and its topology.

On a broader perspective, we note that the action of intertwining a fluidic conduit is
analogous to that of crafting a yarn knot, which has numerous applications in, e.g. surgery
(Silverstein, Kurtzman & Shatz 2009), fabrics (Warren, Ball & Goldstein 2018), sailing
(McLaren 2006) and mountaineering (Soles 2004). Further, fluid flow in knotted cotton
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yarn has applications in tuneable fluidic resistance and microfluidic mixing (Safavieh,
Zhou & Juncker 2011). Common to all these topics is the theory of knots, a rich
mathematical topic (Adams 1994). The more intersections allowed, the more possible
configurations exist (see a small sample of knots in figure 1e). Whereas true mathematical
knots have their strand ends connected to close the loop, our hydraulic knots will have
the inlet and outlet disconnected to allow fluid flow. Nonetheless, we will draw inspiration
from the Dowker–Thistlethwaite knot notation (Dowker & Thistlethwaite 1983) to tabulate
our hydraulic knots.

We begin in § 2 by presenting the design, fabrication and characterization
of microfluidic PDMS devices, each comprising two perpendicularly intersecting
microchannels separated by a thin PDMS membrane. We introduce our modified hydraulic
knot notation in § 2.3 and outline our experimental observations in § 2.4. To rationalize the
data, we develop a mathematical model in § 3 inspired by Christov et al. (2018), where the
main ingredients are a tension-dominated mode of membrane deformations coupled with
the low-Reynolds-number lubrication equations for the fluid flow. This allows us to predict
the flow–pressure relationship for our different hydraulic knot configurations, and in § 4,
we show that the model compares favourably with our experiments. In § 5, we demonstrate
two applications of our microfluidic chip related to attenuating the flow rate output from a
peristaltic pump (§ 5.1), and converting a purely oscillating pressure source into a net flow
rate output (§ 5.2). Concluding remarks are given in § 6.

2. Experiments

We consider a microfluidic device comprising two channels intersecting at a right angle
separated by a thin elastic membrane. The two channels are arranged such that one
extends in the x-direction while the other extends in the z-direction (figures 2a and
2d). The device is fabricated such that the channel cross-sections are either rectangular
(figure 2b) or rounded (figure 2c) via standard lithography techniques and PDMS moulding
(see details below). The PDMS membrane is clamped along the edges of the channels
and has a thickness of τ = 35 ± 5 μm as measured with a profilometer, and Young’s
modulus E = 1.2 ± 0.2 MPa (Liu et al. 2009b). The membrane can bend from the x–z
plane in the rectangular window where the two channels intersect. For our rectangular
channels, the channel heights are h0 = 120 ± 10 μm, widths w = 0.96 ± 0.05 mm and
lengths L = 1.00 ± 0.05 cm (figure 2b,e). For our rounded channels, the widths are
w = 0.96 ± 0.05 mm, lengths L = 1.00 ± 0.05 cm and the height follows approximately
the parabolic shape

h(x) = 4h0

w2

(
x − w

2

) (
x + w

2

)
, (2.1)

where h0 = 250 ± 10 μm is the central height (figure 2c, f ). Our microfluidic device
allows two configurations: either the two channels can be connected directly by an external
tube (figure 1a) in a single junction configuration, or the channels can be connected to one
or several other identical channels before looping back into the junction, in a multiple
junction configuration. In either case, the output flow rate Q is measured as a function of
the applied pressure �p (§ 2.2).

2.1. Microfluidic device fabrication
Our rectangular channel devices (figures 2b and 2e) were made by moulding PDMS
(Sylgard 184, Dow Chemical, MI, USA) on a patterned silicon wafer mould fabricated
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Figure 2. Microfluidic device comprising two intersecting channels. (a) Schematic view of the two
intersecting channels (i and j) separated by an elastic sheet (grey). Here, the two channels are connected via
a pipe to form a single junction. Panels (b) and (c) show cross-sectional views of the intersection when the
channels are rectangular (b) and rounded (c). (d) Shows a top view of the PDMS device, with the two channels
overlaid with dotted lines for clarity. Panels (e) and ( f ) show micrograph images of the channel intersections
for rectangular (e) and rounded ( f ) channels, respectively, and the channel edges are overlaid with dotted lines
for clarity. In ( f ) the channel shape approximately follows a parabola (2.1).

via standard lithography techniques. The PDMS was prepared by thoroughly mixing the
base and curing agent in a 10 : 1 by weight ratio and was cured on the wafer in an oven
for 1 hr at 65 ◦C. Inlet and outlet holes were created using a biopsy punch (2 mm, Integra
LifeSciences, NJ, USA). The membrane was made by spin coating (WS-650-23, Laurell,
PA, USA) PDMS on a clean wafer at 2500 rpm for 30 seconds and was subsequently cured
in the oven. The microfluidic device comprising two channels separated by the membrane
was assembled by first removing the PDMS channel slabs from the moulds and punching
the inlet and outlet holes. One slab was then bonded to the membrane (still attached to
the wafer) via plasma activation (PDC-002, Harrick Plasma, NY, USA) on high radio
frequency power for 30 s. After bonding, the next step was to remove the membrane (now
bound to a channel) from the wafer. To do this, we first filled the channel with water
using a syringe. Then, we cut around the device’s perimeter with a scalpel to release the
membrane from the wafer, allowing us to peel off the membrane gently. By filling the
channel with water, we mitigate the risk of the membrane collapsing into the channel
when the membrane is peeled off the wafer. The other channel slab was bonded to the
other side of the membrane via the same procedure. Note that we aligned the channels
perpendicularly by eye, although a purpose-built alignment set-up (e.g. Li 2015) would be
feasible in ensuring optimal alignment and centring.

To fabricate the rounded channel devices (figures 2c and 2f ), we followed the procedure
by Hongbin et al. (2009) to make channel moulds. Briefly, the method consists of
inflating a microchannel with a thin membrane lid and casting PDMS on top of the
inflated membrane to yield a new channel with a height profile identical to the membrane
deflection. However, instead of casting PDMS, we cast a fast-curing polymer (Elite Double
22, Zhermack, Italy) mixed 1 : 1 by weight. When curing was completed, we removed the
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polymer slab (with the channel imprint) and cast a liquid plastic resin (FormCast Burro,
FormX, Netherlands) mixed 1 : 1 by weight to yield a rigid, rounded channel mould for our
subsequent PDMS casting. This modification to Hongbin et al. (2009) method allows for
multiple devices to be cast from the same mould without repeating the inflation step. We
used an inflation pressure of �pI = 2 kPa to produce our rounded channel mould, which
yielded a centre height of h0 = 250 ± 10 μm (figure 2f ). The advantage of this geometry is
that it enables conforming contact between the deflected membrane and the bottom of the
channel. Therefore, in this conforming geometry, the membrane can occlude the channel
at a lower pressure relative to the rectangular channel geometry (Unger et al. 2000), thus
allowing us to study the fluid–structure interactions in multiple connected junctions within
our operating pressure range. To connect device channels, we used polyvinylchloride
(PVC) tubing with internal and outer diameters of 1.0 mm and 2.0 mm, respectively
(GRA-GL0100005, Mikrolab Aarhus, Denmark). The PVC tubing’s ends were cut with
a razor to create a tapered tip, allowing easy insertion into the PDMS devices.

2.2. Experimental set-up
In characterizing our single or multiple junction devices, we measured the fluid flow
rate Q through the device as a function of applied pressure, �p ≈ 0–40 kPa. We
used a pressure controller (LineUp Flow EZTM, Fluigent, France) to sweep the applied
pressure. The inlet of the controller was connected to a source of pressurized air,
and its outlet to a closed container containing water with viscosity η = (0.9 ± 0.1) ×
10−3 Pa s. A straw tube inserted into the container directed the pressurized water
into a pressure sensor (26PC Flow-through, HoneyWell, NC, USA), and then into our
microfluidic device. The device’s outlet was connected to another pressure sensor and
finally into a flow meter (SLF3s-1300F, Sensirion, Switzerland) connected to a reservoir
held at atmospheric pressure. Using two pressure sensors kept at a constant altitude,
we could accurately measure the pressure drop across the device �p, while the flow
meter provided a reading for the fluid flow rate Q. The pressure sensors were amplified
(HX711, SparkFun Electronics, CO, USA) and connected along with the flow meter to
a microcontroller (Nano Every, Arduino, Italy), and data were acquired in MATLAB
(V. 2022A, MathWorks, MA, USA) using custom-built software (available upon request).

2.3. Basic junction notation
Before we proceed with experimental observations of our fluidic devices, a basic
junction labelling notation must be introduced to avoid confusion about the experimental
configurations. To this end, we introduce a systematic labelling technique inspired by
the Dowker–Thistlethwaite notation used in the mathematical knot literature (Dowker
& Thistlethwaite 1983; Adams 1994). Briefly, our device encompasses two connected
intersecting microchannels separated by a thin PDMS membrane. Fluid pressure causes
one microchannel to deflect into the other. In our notation, we label the expanding channel
by an odd integer and the contracted channel by an even integer. This study focuses on
the hydraulic fingerprint of different sequential channel self-intersections. To this end, we
will suppose that our microfluidic devices can be made with identical characteristics (i.e.
identical internal channel dimensions and perfectly aligned and centred channels). For
each identical device unit, we label the expanding and contracted channel, which, for three
devices, yields unit one with channels [1] and [2], unit two with channels [3] and [4] and
unit three with channels [5] and [6] (figure 3a). Later (§ 5), we will consider non-identical
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(d )

(e)

( f )

Figure 3. Tabulation of junction connections. (a) Labelling of channels in identical and non-identical unit
devices. Tabulation of (b) serial, (c) nested and (d) mixed sequences. (e) Commutative rule for identical devices
and ( f ) examples of non-commutative sequences.

unit devices, but for now, we will label channels in a non-identical unit device by letters
[A] and [B] (figure 3a).

Having labelled each channel, tabulating a connection between one or more unit devices
is relatively straightforward, and the sequences we study can be roughly divided into three
categories. The first category, serial sequences, is arguably the simplest and encompasses
the connection of units where each unit’s channels are individually connected. For
instance, for unit one, the connection between channels [1] and [2] are made to yield
the serial connection [12] (figure 3b). Connecting [12] to another individually connected
unit (sequence [34]) yields another serial sequence [1234] (figure 3b), and similarly
for the sequence [123456] by connecting an additional unit device. However, the first
channel [1] could also be connected to [3] instead of looping directly to [2]. This yields
the category of nested sequences, such as [1342] and [135642], where one or more
intersections are nested inside each other (figure 3c). The third category, mixed sequences,
encompasses serial and nested configurations that are connected to or within each other,
such as [134562] and [123564] (figure 3d). For identically produced unit devices, the
action of replacing or switching one unit with another does not change the sequence
(figure 3e), nor does reversing the direction at which pressure is applied (e.g. by switching
the sequence [12] into [21], see figure 3e). This commutative rule is not applicable for
non-identical devices (sequence [AB]) where the flow rate depends on which direction
the pressure is applied (figure 3f ). For instance, a non-identical device can be made by
stacking one rounded channel [A] and a rectangular channel [B] in a unit device (we will
explore an application related to flow rectification in § 5 using a non-identical device).
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Unit devices Serial Nested Mixed

1 [12]
2 [1234] [1342], [1324]
3 [123456] [135642], [135246] [123564]
4 [12345678] [13578642] [13245768], [12354768], [12357864]

Table 1. Table of hydraulic knot configurations we test. The knot notation is introduced in § 2.3, and our
experiments sample configurations from the three categories: serial, nested and mixed configurations.

Moreover, changing a connection in a sequence breaks the commutative rule (e.g. [135642]
differs from [135624], figure 3f ).

It is worth pointing out that the number of possible sequences increases dramatically
with the number of connected identical unit devices. Only one sequence, [12], is permitted
for a single unit device, while for two unit devices, three sequences, [1234], [1342] and
[1324], are permitted (starting with channel [1]). For three and four unit devices, 15 and
105, respectively, unique sequences can be made. To keep our experiments manageable,
we limit ourselves to a sample of these possible sequences representing the three sequence
categories. These are listed in table 1.

2.4. Observations on elementary intertwined configurations
Having outlined the experimental methods and protocol, we now focus on measured
flow–pressure relationships for elementary configurations of our fluidic devices. To
explore elastohydrodynamic effects in self-intersecting channels, we will first examine
the simplest case: the serial connection [12], which involves a single unit device. To
understand the impact of membrane deformations, we first measured the characteristics
of the [12] sequence with rounded channels when the membrane was relatively thick
(τ ≈ 3 mm), inhibiting significant deformations. For this device, we found that the
Q − �p relationship was approximately linear, in accordance with the Hagen–Poiseuille
law (figure 4a). In contrast, when the membrane was thin, a deviation from the 1 : 1
relationship was observed (figure 4a). When the pressure exceeded �p ≈ 10 kPa, which
was necessary for significant membrane deformation, the flow rate became approximately
constant for the conforming device (flow limiting regime). A deviation from the 1 : 1
relationship was also observed for the device with rectangular channels. However, a
constant flow rate was not reached within the pressure range available in the experiment.
For the conforming channel devices, we denote the flow rate plateau value by Qmax.
Below the actuation pressure, the Q − �p relationship was approximately linear, with a
slope equal to that of the thick membrane experiment. With two unit devices, we access
the serial configuration [1234] and two nested configurations [1324] and [1342]. For the
serial configuration, [1234], we find that Qmax is similar to that of the [12] sequence.
However, the actuation pressure is �p ≈ 20 kPa, roughly double that of the [12] sequence
(figure 4b). Interestingly, Qmax values for the two nested sequences are approximately equal
and lower than that of the serial sequence (figure 4b).

Similar qualitative patterns are seen for the three and four unit device experiments
(figure 4c,d). The largest Qmax is found for the serial sequences, [123456] and [12345678],
while the lowest are found for the nested sequences, [135642] and [13578642]. The mixed
sequences, e.g. [123564], have a Qmax that lies between that of the serial and nested
sequences (figure 4c), and similarly for the four unit device mixed sequences. A pattern
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Figure 4. Flow rate vs pressure (Q − �p) relationships for elementary hydraulic knots. The knot
configurations are schematically drawn in each panel. (a) The serial sequence [12] using a single unit device
with rectangular channel shapes and a relatively thick membrane (black data points), rectangular channel
shapes and a relatively thin membrane (grey data points) and conforming channel shapes and a relatively thin
membrane (purple data points). Both conforming (purple) and rectangular (grey) junction channels were tested.
In (b–d), all channels have conforming cross-sections. (b–d) Show experimentally measured characteristics of
two, three and four unit device sequences connected according to the diagrams in the legends.

also emerges for Qmax for nested sequences; the more nested devices, the lower the flow
rate plateau, e.g. [1342] has a larger Qmax than [135642], that again has a higher Qmax than
[13578642].

We briefly summarize our experimental findings with the following qualitative
statements. Serial sequences yield approximately the same Qmax, and the pressure required
for reaching Qmax scales approximately linear with the number of unit devices. Nested
sequences yield the lowest Qmax, decreasing with additional nested unit devices. Mixed
sequences have a Qmax higher than nested and lower than serial sequences. Finally, the
initial slopes of the Q − �p diagrams are independent of sequence configurations and
depend only on the number of unit devices.

3. Theoretical model

We will proceed by attempting to rationalize our experimental observation on the flow
limitation dependency on hydraulic knot configuration by modelling the flow vs pressure
relationship for our fluidic devices. We start by exploring fluid–structure interactions in a
single channel junction in § 3.1 and the resulting flow–pressure relationship for a single
knot element in § 3.2. In § 3.3, we consider the coupling between multiple junctions and
procedures in modelling coupled unique junctions in § 3.4.
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3.1. Single junction

3.1.1. General considerations and approximations
We consider a single junction, comprising a top and a bottom channel of width w, crossing
perpendicularly and separated by a flexible square membrane of thickness τ . As a result
of the transmural pressure, the membrane bends downwards, reducing the bottom channel
cross-section and increasing its hydraulic resistance. We assume that the membrane is
thin, in the sense that τ � w, and that it is clamped at its boundaries. In practice, the
transmural pressure drop changes as the pressure drops along the compressed channel
and is thus a function of z (figure 5a). Furthermore, the membrane is clamped on all
four edges in the w-by-w area in which the two channels intersect, which demands a
complicated two-dimensional description of the deflection in the form of cumbersome
series expansions (Timoshenko & Woinowsky-Krieger 1987). Even if we accounted for
such solutions, solving the fluidic problem, which amounts to solving Reynolds equation
∇ · (H3∇p) = 0 (with H the channel height, see figure 5) if the membrane slope is small
(Bruus 2007), does not lead to analytical solutions because of the complicated form
of H. To keep the simplest possible approach yet retain the constriction of the bottom
channel as the essential ingredient, we ignore the dependence along the z-direction by
assuming uniform transmural pressure �pm and neglect end effects near the clamped
region at z = ±w/2. Moreover, we assume that the membrane deflection ζ(x) remains
small, such that |ζ ′(x)| � 1. However, the deflection is often comparable to, or larger
than, the membrane thickness. Hence, the bending of the membrane induces a tension
force T , which must be retained in the analysis (Landau & Lifshitz 1986). In such a case,
the deflection obeys the equation

B
d4ζ

dx4 − T
d2ζ

dx2 = �pm, (3.1)

where B = Eτ 3/[12(1 − ν2)] is the flexural rigidity (with ν the Poisson ratio), with
clamped boundary conditions

ζ = 0,
dζ

dx
= 0 at x = ±w

2
. (3.2)

The solution to (3.1) with boundary conditions (3.2) is

ζ(x) = �pmw4

B

(
− x2

2w2β2 + c1 cosh
βx
w

+ c2

)
, (3.3)

where β = w
√

T/B is a parameter comparing stretching with bending, and

c1 = 1
2β3 sinh(β/2)

and c2 = 1
8β2 − 1

2β3 coth
β

2
, (3.4a,b)

are integration coefficients. When β � 1, bending dominates, and the deflection ζ(x) �
�pm(x − w/2)2(x + w/2)2/(96B) follows a quartic function. When β 	 1, stretching
dominates, and the deflection ζ(x) � �pm(w2/4 − x2)/(2T) follows a parabolic function
(except for a thin boundary layer close to the clamped ends). The tension force is related to
the extension of the clamped membrane upon deflection. In the limit |ζ ′(x)| � 1, it equals
(Landau & Lifshitz 1986)

T = Eτ

2w

∫ w/2

−w/2

(
dζ

dx

)2

dx, (3.5)

which can be computed from (3.3).
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w w
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ζ (x) ζ (x)

h0
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h0

h0
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L

z
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(a) (b) (c)

x

x x

Figure 5. (a) Top view sketch of the junction, highlighted in light shade. The top channel is in the z-direction,
while the bottom channel is in the x-direction. (b) Side view sketch of the rectangular channel of width w and
height h0. (c) Side view sketch of the conforming junction of width w and centre height h0.

We shall henceforth assume β 	 1, an assumption which we will shortly justify. In this
case, (3.5) yields T � Eτ�p2

mw6/(24B2k4), whence

β = 31/3
√

2(1 − ν2)

(
�pm

E

)1/3 (w
τ

)4/3
. (3.6)

For our geometric and material parameters (see § 2.1), and setting �pm = �pI = 2.0 kPa,
the parameter is β ≈ 15, indicating that stretching is the dominant mode of deflection in
our range of pressures. Both bending and stretching could be important to describe the
deflection at relatively low pressure accurately. However, according to our data (see, e.g.
figure 4a), the flow–pressure relationships of our devices are mostly linear at relatively
low pressure, indicating that the precise membrane deformation is not important at low
pressure. To keep the approach simple, we therefore restrict the following analysis to the
stretching-dominated mode of deflection, where the membrane deflection can be written
as

ζ(x) = 4h0

w2

(
�pm

�pI

)1/3 (w
2

− x
) (

x + w
2

)
, (3.7)

where we have fitted the value of β (3.6) to the rounded channel micrograph in figure 2( f )
such that deflection equals the channel centre height, ζ(0) = h0, when the transmural
pressure equals the inflation pressure used to generate the channel shape, �pm = �pI =
2.0 kPa.

We denote H(x) the height of the constricted bottom channel, taken independent of
z, consistently with the aforementioned assumption; hence, the flow is unidirectional in
the z-direction, and the pressure gradient ∇P along z is uniform. Once again, this is
not true in our square junctions, but it is consistent with our very simple approximation
of disregarding any z-dependence along the junction. We assume that the height slowly
varies, |H′(x)| � 1, and that the Reynolds number is small. In this case, the relation
between the flow rate Q and the pressure gradient takes the following form, see e.g.
Christov et al. (2018):

Q = −∇P
12η

∫ w/2

−w/2
H(x)3 dx. (3.8)

It should be noted that the channel height H(x) can also vary with the flow-direction
coordinate, z, when the transmural pressure drop is non-uniform. However, to keep the
modelling approach simple, we have neglected such dependency. In our experiments,
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the effective Reynolds number (Christov et al. 2018) is Re′ = (h0/L)(ρQ/(ηw)) ≈ 0.2.
If the membrane deflection and the channel height were truly independent of z, we could
replace the pressure gradient ∇P in (3.8) by �Pb/w, with �Pb the pressure drop across
the constricted bottom channel, and w the length of the square junction. To account for
the complicated three-dimensional structure of the membrane deflection and of the flow
profile, we simply replace the relation ∇P = �Pb/w by

∇P = �Pb

Leff
, (3.9)

where Leff is an effective junction length, which serves as a fitting parameter. Since the
boundaries located at z = ±w/2 tend to rigidify the membrane, the real deflection is
overestimated by (3.7), and the bottom channel is less constricted. Hence, we expect Leff
to be lower than w. Finally, inserting (3.9) in (3.8), the relation between the flow rate and
the pressure drop across the constricted bottom channel then writes

Q = −�Pb

Rj
, (3.10)

with the hydraulic resistance of the constricted bottom channel given by

R−1
j = 1

12ηLeff

∫ w/2

−w/2
H(x)3 dx. (3.11)

The simplifications leading to the hydraulic resistance of the constricted bottom channel
were also exploited by Ozsun, Yakhot & Ekinci (2013) to estimate the nonlinear resistance
of deformed channels. We shall now calculate explicitly the flow rate–pressure drop
relationship in the two cases encountered in our experiments: (i) a conforming junction,
and (ii) a rectangular junction.

3.1.2. The conforming junction
The majority of our experiments are conducted on channels with a rounded cross-sectional
shape (figure 2f ), moulded from a membrane inflated by the pressure �pI , as
discussed in § 2.1. The channel height follows approximately the parabolic shape h(x) =
(4h0/w2)(w/2 − x)(w/2 + x). As alluded to in the previous section, the compressed
channel height then takes the parabolic form (figure 5b)

H(x) = 4h0

w2

[
1 −

(
�pm

�pI

)1/3] (w
2

− x
) (

x + w
2

)
. (3.12)

Hence, the junction is conforming in the sense that, if contact were to be established
between the membrane and the bottom wall of the channel, it would extend over all the
channel, thereby closing it. Inserting (3.12) in (3.11) yields

R−1
j = 1

R1

[
1 −

(
�pm

�pI

)1/3]3

, (3.13)

where

R1 = 105
4

ηLeff

wh3
0

, (3.14)

is the undeformed resistance of the compressed channel segment. The resistance of the
straight segments of the rounded channel device, which are not influenced by membrane
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deflections, is given by

R0 = 105
4

ηL

wh3
0
. (3.15)

3.1.3. The rectangular junction
Some of our devices present channels with standard rectangular cross-sections of uniform
h0 when the membrane is undeformed (figure 5c). When the membrane is deformed, two
cases need to be analysed, according to whether the membrane makes or not contact with
the bottom wall. This has been discussed by Gilet & van Loo (2022) but in the case of
a membrane of constant curvature. The case without contact, respectively with contact,
corresponds respectively to ζ(0) < h0 and ζ(0) ≥ h0, where ζ(0) is computed from (3.7);
hence, this corresponds respectively to �pm < �pI and �pm ≥ �pI .

In the absence of contact, the height profile is

H(x) = h0 − ζ(x) = h0

[
1 − 4

(
�pm

�pI

)1/3 (
1
2

− x
w

) (
1
2

+ x
w

)]
. (3.16)

Inserting this expression in (3.11) yields:

R−1
j = wh3

0
12ηLeff

[
1 − 2

(
�pm

�pI

)1/3

+ 8
5

(
�pm

�pI

)2/3

− 16
35

�pm

�pI

]
. (3.17)

In the presence of contact, the expression (3.3) for the membrane deflection no longer
holds. However, neglecting the bending term in (3.1) shows that the membrane profile
remains parabolic away from the contact area. Moreover, the previous analysis showed
that the curvature is given by d2ζ/dx2 = −8h0(�pm/�pI)

1/3/w2, see (3.3). Hence, at
given �pm > �pI , the portions of curved membrane outside of the contact area are
parabolas of curvature −8h0(�pm/�pI)

1/3/w2, tangent to the channel bottom wall at the
(yet unknown) edge x = ±wc/2 of the contact area, and such that ζ = 0 at x = ±w/2.
Straightforward algebra shows these conditions select both the contact edge location, wc =
w[1 − (�pI/�pm)1/6], and the following parabolic profile in the range x ∈ [wc/2, w/2]:

ζ(x) = −4h0

w2

(
�pm

�pI

)1/3 (
x2 − wcx + 1

2
wcw − 1

4
w2

)
, (3.18)

and a symmetric profile in the range x ∈ [−w/2, −wc/2]. Expressing the height channel
H(x) = h0 − ζ(x) and inserting in (3.11) then yields

R−1
j = wh3

0
12ηLeff

× 1
7

(
�pI

�pm

)1/6

. (3.19)

The hitherto derived expressions for the hydraulic resistance of both the conforming and
rectangular junctions share the same form

Rj = R1f
(

�pm

�pI

)
, (3.20)

where R1 is the undeformed resistance. The crucial point is that they are functions of the
transmural pressure (through the dimensionless function f ), which depends on the rest of
the hydraulic network. We now study the entire network to quantify the impact of junction
peculiarities on flow rate–pressure drop correlation.
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p = 0 p = 0

p = �p p = �p

Rc

2Rc

2Rc

2Rc

2RcRc Rj

R0

Rc

Rc

Rj
[12] Rj

[34]

R0

R0 R0

R0

R0 R0 R0 R0R0

R0

R0

(a) (b)

Figure 6. Schematic drawings of (a) the [12] and (b) 1342 junctions. Straight channel segments, connective
tubes and junction resistances are termed R0, Rc and Rj, respectively. When multiple junctions are connected,
e.g. in [1342] in b), the junction resistances are labelled with superscripts according to the device channels, see
figure 3.

3.2. The simple overlap

3.2.1. General conditions
We now turn to the simple network involving a junction: the simple overlap (i.e. the
single serial junction [12]). To connect channels, we fitted each straight device channel
(with resistance R0) with a cylindrical connecting tube. The connector has resistance
Rc = 8ηLc/(πa4) (where a and Lc are the radius and length, respectively, with dimensions
given in § 2.1). With our parameters Rc ≈ 0.5R0, and thus the connecting tubes are
not negligible in the total device resistance. When two channels are connected, e.g. by
connecting [1] to [2] in the [12] knot (see figure 6) we are left with four segments of R0
resistance, four segments of Rc resistance and the junction resistance Rj. Following the
standard additivity law of hydraulic resistors connected serially (Bruus 2007), the relation
between applied pressure �p and the flow rate Q is therefore

�p = (4Rs + Rj)Q, (3.21)

where Rs = R0 + Rc is the resistance of a straight channel segment independent of
membrane deformations. Moreover, the transmural pressure across the membrane comes
from the pressure drop along the path from the expanding top channel’s junction outlet
to the inlet of the compressed bottom junction channel, and hence it obeys �pm =
2RsQ. Therefore, from (3.20), �p = [4Rs + R1f (Q̄)]Q with a dimensionless flow rate
Q̄ = Q/Qmax with

Qmax = �pI

2Rs
, (3.22)

where the factor of 2 arises from two resistive segments of Rs = R0 + Rc linking
the bottom junction outlet to the top junction inlet. We can put the characteristics in
dimensionless form by setting ��p = �p/�pI and introducing the relative resistance
α = R1/(4Rs), and we get

��p = 2[1 + αf (Q̄)]Q̄. (3.23)

Notice that this relationship is nonlinear because of the coupling between the flow and the
membrane deformation, quantified by the function f .
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3.2.2. The conforming junction
In the case of the conforming junction, we get from (3.13) and (3.20) that

f (Q̄) = (1 − Q̄1/3)−3, (3.24)

which when injected into (3.23) yields

��p = 2[1 + α(1 − Q̄1/3)−3]Q̄. (3.25)

The natural outcome of this calculation is the prediction of a maximal possible flow rate,
equal to Qmax. Here, flow limitation comes from the fact that at high pressure drop,
any increase of the flow velocity induced by an increase of the pressure drop is exactly
compensated by an increase of the hydraulic resistance of the occluding junction, leading
to a saturation of the flow rate.

3.2.3. The rectangular junction
In the case of the rectangular junction, we get from (3.17), (3.19) and (3.20) that

f (Q̄) =

⎧⎪⎨
⎪⎩

(
1 − 2Q̄1/3 + 8

5
Q̄2/3 − 16

35
Q̄

)−1

if Q̄ ≤ 1

7Q̄1/6 if Q̄ ≥ 1

, (3.26)

which, injected into (3.23), yields the characteristics for rectangular channels. In marked
contrast with the conforming junction, the flow rate can increase indefinitely if the pressure
drop increases, according to the scaling law ��p ∝ Q̄7/6, which is a mild nonlinearity.

3.3. Multiple junctions
Multiple junction devices can be connected in various sequences. In our experiments, we
found that the saturation flow rate Qmax depends on the particular sequential connection
of junctions, justifying the development of a mathematical model that can predict a given
sequence’s Q − �p relationship. What makes this exercise particularly challenging is that
the transmural pressure drop, �pm, across one channel intersection can depend on the
pressure-drop-dependent resistance of other intersections. To proceed, we will start by
recognizing that the hydraulic knots we study are simple serial connections of resistances.
Therefore, similarly to the simple junction, we can use the additivity law of hydraulic
resistors connected in series (Bruus 2007) to write the relationship between applied
pressure and output flow rate

�p = Q
[

4NRs +
∑

unit devices

R[ik]
j

(
�p[ik]

m

�pI

)]
, (3.27)

where N is the number of unit devices in the knot. The first term stems from each device
having four straight segments (independent of membrane deformations) of resistance Rs.
The second term is the sum of junction resistances. Notice that we assigned the superscript
[ik] to junction resistance and transmural pressure, where, consistently with § 2.3, the odd
integer i corresponds to the expanded channel, and the even integer k to the contracted
channel, of a given unit device. For instance, for two unit devices [12] and [34], the second
term in (3.27) yields R[12]

j + R[34]
j , where the junction resistances depend on the transmural

pressures �p[12]
m and �p[34]

m , respectively (see figure 6b). As alluded to, evaluating (3.27)
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can be challenging because the junction resistances can couple. To help clarify, we shall
first consider an example of a nested sequence, [1342].

In sequence [1342] the junction [34] is nested within [12] (figure 6b), and it is clear
that the transmural pressure drop of [12], �p[12]

m depends on the junction resistance of
[34], R[34]

j , which depends on the transmural pressure drop of [34], �p[34]
m . However,

what enables us to proceed with developing the analytical model is that the transmural
pressure across [34], �p[34]

m , does not depend on other junction resistances. In fact, for any
sequence that follows our notation, there is always at least one junction whose �pm does
not depend on other junctions. For the example [1342], this means that �p[34]

m = 2RsQ
(similarly to the simple overlap in § 3.2.1), which can be readily injected into (3.20) to find
the junction resistance R[34]

j . Knowing R[34]
j enables evaluating the pressure drop across

the [12] junction as �p[12]
m = Q(6Rs + R[34]

j ), where the additional factors of Rs come

from the extra straight channel sections in the unit containing [34]. Again, �p[12]
m can be

injected into (3.20) to yield the junction resistance R[12]
j allowing evaluating the �p − Q

relationship by summing all the resistive terms in (3.27).
Generally, the challenging step in evaluating (3.27) for a given sequence is identifying

which junction to start with in terms of calculating the first junction-independent �pm
and Rj. However, using our knot notation, it is simply done by taking the first even
integer number in a knot sequence. The next even integer junction may depend on the
first or be trivial (which is true for all serial configurations). For example, in the sequence
[135642], we recognize that [6] is the first even number, and we calculate �p[56]

m = 2RsQ
and R[56]

j (from (3.20)) which is then injected into �pm and Rj first for [34] and then
[12], finally allowing evaluation of (3.27). In [135642] junction [34] depends on [56], and
[12] depends on both [34] and [56]. In contrast, the serial connection [123456] contains
only trivially solved junctions, as all of the transmural pressure drops can be written
�pm = 2RsQ.

We end this section by discussing the maximum attained flow rate in our hydraulic knot
configurations. As was evident from our data (figure 3), nested sequences yield a lower
Qmax than serial sequences. In (3.25) we found that, for a single rounded junction, the
maximum flow rate Qmax = �pI/(2Rs) is set by the inflation pressure (for our experiments
�pI = 2.0 kPa), as a result of the dimensionless flow–structure coupling function f (Q̄).
The implications for Qmax in our knots are best appreciated by returning to the example of
the [1342] sequence. The junction resistance R[34]

j is evaluated by inserting �p[34]
m = 2RsQ

into (3.20), yielding

R(34)
j = R1

[
1 −

(
2RsQ
�pI

)1/3]−3

, (3.28)

which predicts the maximum flow rate Qmax = �pI/(2Rs). To evaluate R[12]
j , we insert

�p[12]
m = Q(6Rs + R[34]

j ) into (3.20), which gives

R[12]
j = R1

[
1 −

(Q(6Rs + R[34]
j

�pI

)1/3]−3

= R1

{
1 −

(
Q

�pI

)1/3 [
6Rs + R1

(
1 −

(
2RsQ
�pI

)1/3)−3]1/3}−3

, (3.29)
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where the reduced maximum flow rate Q′
max can be found by equating the braced

term to zero and solving for Q. For the geometric and material parameters used in
our experiments, Q′

max ≈ 0.24Qmax, which is in reasonable agreement with our data
comparing the maximum flow rates of [12] with [1342] in figure 4(a,b).

Before moving on with further comparing our mathematical model with our
experimental data, we will briefly discuss modelling approaches for non-identical unit
devices connected in a hydraulic knot.

3.4. Considerations on multiple junctions with non-identical geometries
In the previous section, we discussed modelling multiple connected identical junctions.
In general, the junctions need not be identical and may differ in, e.g. channel height
(linked to the inflation pressure for conforming channels), width or length. This can
result in device-specific resistances, inflation pressures and different flow–structure
coupling functions (i.e. for different channel geometries). For N unit devices, the �p − Q
relationship in (3.27) can be adapted to

�p = Q
[ 2N∑

j=1

R[ j]
s +

∑
unit devices

R[ik]
j

(
�p[ik]

m

�p[ik]
I

)]
, (3.30)

where the first term sums the (different) straight channel resistances R[ j]
s and the second

term sums the junction resistances. We will not go further into details on modelling
multiple non-identical junctions, but note that we have an experiment in § 5 where we
explore the flow-rectification features of a device that has two different channel geometries.

4. Comparison between experiments and theory

To compare our flow–structure interaction model with our experiments, we solved (3.27)
for each of our hydraulic knot configurations (table 1). To do this, we used the geometric
and material parameters listed in § 2. However, the effective overlap length Leff remains
undetermined. We fit Leff ≈ 0.35 mm to the measured flow vs pressure characteristics
of a single knot element [12] by minimizing the difference between the experimental
and modelled maximum flow rate (at �p = 40 kPa). Previous research has also fitted
Young’s modulus of PDMS from Q − �p data for similar hydraulic set-ups (Anand,
Muchandimath & Christov 2020; Guyard, Restagno & McGraw 2022). Evaluating (3.27)
allows a side-by-side comparison between our experiment and model (figure 7). For our
serially connected knots, we see a qualitative and almost quantitative agreement between
theory and experiment (figure 7a,b). The onsets of flow limitation (where a digression
from the 1 : 1 relationship becomes apparent) happen at lower pressures in the model,
and the model converges slower to constant flow rates compared with experiments. In the
model, the initial slope of the Q − �p relationship decreases for the increased number of
serially connected knots, which is consistent with experiments. For our nested and mixed
knots, figures 7(c) and 7(d) (nested) and figures 7(e) and 7( f ) (mixed), the qualitative
and almost quantitative agreement between model and experiment remains. Although the
onset of flow limitation happens at consistently lower pressures in the model compared
with experiments, the model accurately predicts the flow rate limitation levels measured
experimentally.

To directly compare the maximum flow rate attained by model and experiments for all
our knot samples, we show, in figure 8(a), the maximum modelled flow rate, QM

max, taken at
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Figure 7. Comparison of our experimental data (left column) with the developed mathematical model (right
column). We show experimental data and model results for serial (a,b), nested (c,d) and mixed (e, f )
configurations. In each category of knots, the knots corresponding to the shown data are drawn as a legend
with colours corresponding to the data colours in the plots.

�p = 40 kPa, i.e. the maximum pressure applied in the experiments vs the experimental
flow rate, QE

max, taken at the same pressure. The data points are coloured according to the
knot sequences; see legends in figure 4 and figure 7. The solid black line indicates a 1 : 1
relationship between measured and predicted maximum flow rates. We see that the model
favourably predicts the measured maximum flow rates despite the model’s simplicity. In
figure 8(b), we show the actuation pressure in the model, �pM

A , vs experiment, �pE
A,

for all of our knot samples. We define the actuation pressure as the applied pressure
where the onset of flow limitation happens. We find the actuation pressure, in both model
and theory, by fitting a straight line to the linear regimes of our data and model (i.e. at
relatively low pressure), which follows Q = C�p, where C is the slope. We then intercept
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Figure 8. Comparison between (a) the flow rate attained in experiments and model (QE
max and QT

max,
respectively) at the maximum applied pressure �p = 40 kPa and (b) the actuation pressure in experiments
and model (�pE

A and �pE
A , respectively) where flow limitation ensues. In (b), 1 : 2 and 1 : 4 lines are shown in

dark and light grey, respectively.

the linear fit with the maximum attained flow rate (taken at �p = 40 kPa), such that
�pA = Qmax/C, where �pA is the actuation pressure and Qmax is the maximum flow rate.
We do this for our measurements and model, yielding the observed actuation pressure
�pE

A and predicted actuation pressure �pM
A . The solid black line in figure 8(b) shows a

1 : 1 relationship between experimental and predicted actuation pressures. We see that the
model consistently underestimates the actuation pressures. For the serial knots, the model
predicts the actuation pressures to be a factor of 2 lower than the observed, while for nested
and mixed knots, the model predicts the actuation pressures to be a factor of roughly 4
lower than the observed.

One potential reason for the lack of quantitative agreement between predicted and
observed actuation pressures could be our assumptions of uniform transmural pressure
drops and one-dimensional membrane deflections. It is likely that the transmural pressure
drop is not uniform for single junctions, such as the [12] knot, and that the pressure
drop along the junction may be important, if not dominating. As a result, the membrane
deflection could depend on the z-coordinate (see figure 5) and the resistance of the junction
itself, leading to a description of the membrane deflection that is more complicated
than our one-dimensional approximation. In addition, we neglect the finite length effects
near the clamped edges of the membrane at z = ±w/2, which would also demand a
two-dimensional deflection description (Anand et al. 2020). These combined effects
may result in our model overestimating the membrane deflection at a given pressure
and the degree to which the junction is compressed, leading to a lower onset of flow
limitation predicted by the model compared with our experiments. Finally, it is worth
mentioning that previous research has found PDMS to be hyperelastic at sufficiently large
deformations (Nunes 2011), which can result in a scaling between transmural pressure
and deflection magnitude that differs from the cubic relationship we used (Song et al.
2019). Finally, some of our data, specifically the serial configurations (figure 6a) and
some mixed configurations (figure 6e), exhibit non-monotonic relationships between
flow and pressure, whereas other configurations yield monotonic relationships between
flow and pressure. Our model predicts a monotonic flow–pressure relationship for all
configurations. Members of our team have previously explored soft channel devices with
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non-conforming channel cross-sections that also exhibit non-monotonic flow–pressure
relationships (Park et al. 2021; Biviano et al. 2022). Improving the description of the
deformation in the knot junctions, as well as addressing the non-uniform junction pressure
gradient, may result in non-monotonic relationships. While the predicted actuation
pressure could potentially be improved by refining the membrane description (e.g. a
two-dimensional description, and/or allowing a non-uniform transmural pressure), our
model contains the necessary ingredients for quantitatively predicting the limiting flow
rate for the hydraulic knots. Lastly, it is worth noting that the model predictions are quite
sensitive to variations in geometric and material parameters. For instance, a modest 10 %
variation in channel height results in a ≈ 25 % decrease in channel resistance (R0 ∼ h−3

0 )
and a ≈ 77 % increase in maximum flow rate for a single [12] knot (since �pI ∼ h3

0 and
Q ∼ �pIR−1

0 ). Further, a 10 % variation in PDMS’ Young’s modulus results in a 10 %
variation in maximum flow rate (since Q ∼ �pI and �pI ∼ E) but does not change the
initial slope of the Q − �p diagram, since E does not influence the base resistance of our
system.

5. Applications to rectification of fluid flow

In this section, we introduce two possible applications of hydraulic knots: attenuating
the flow rate output from a peristaltic pump and converting a purely oscillatory applied
pressure to a net flow rate output by means of an anisotropic resistor.

5.1. Smoothing the flow rate output from a peristaltic pump
A significant drawback of peristaltic pumps is the ripples in flow rate output that arise due
to the rotational compression of the pump tubing. This unsteady flow can be unfavourable
for, e.g. flow cytometry (Piyasena & Graves 2014) and infusion systems (Snijder et al.
2015), and considerable care must be taken in smoothing the flow rate. We will consider the
basic application set-up where a peristaltic pump is connected to a device with resistance
RD. Introducing a compliant vessel between the pump and device can attenuate some, but
not all, ripples in the peristaltic flow (Kang & Yang 2012; Kang et al. 2014). Further
improvements can be made by including a compliant vessel and a passive nonlinear
resistance that only permits one specific flow rate within a range of pressure, akin to the
flow limitation exhibited by our hydraulic knots (Doh & Cho 2009; Zhang et al. 2015;
Biviano et al. 2022). However, the introduced nonlinear resistances need to be carefully
tuned such that the flow rate limitation level matches the application specifications. We
hypothesize that we can overcome this obstacle by exploiting a feature of our hydraulic
knots: combining multiple identical devices (each with the same flow limiting level)
in different configurations can yield a spectrum of flow limiting levels (figure 4). To
test our hypothesis, we conducted an experiment that comprised a standard peristaltic
pump (WPX1 with four rollers and 0.50 mm internal diameter tubing, Welco, Japan).
We connected one end of the pump tubing to a water-filled reservoir and the other end to
a 20 cm long thin-walled silicone tubing (inner diameter 2.0 mm, outer diameter 3.0 mm,
GRA-HS0200005, Mikrolab Aarhus, Denmark). We then connected the silicone tubing to
one of our hydraulic knots and then a 10 cm long rigid resistor (0.50 mm internal diameter
polyetheretherketone tubing, Mikrolab Aarhus, Denmark), which served as a proxy for the
application device (following the Hagen–Poiseuille law, RD ≈ 5.9·1010 Pa s m−3 in our
experiment). Using a flow meter, we measured the flow rate output from the resistive tube
(see § 2). The pump was controlled via a stepper drive (A4988, Allegro MicroSystems,
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Figure 9. Soft hydraulic knots can enable microfluidics applications. (a) Output flow rate from a peristaltic
pump connected to a compliant tube, our hydraulic knot and, finally, a resistive tube. The black data points are a
baseline with no hydraulic knots. The purple, orange and blue data points are for the [12], [1342] and [135642]
knots, respectively. The different series are arbitrarily shifted in time for a better rendering. (b) Flow–pressure
characteristics of a direction-dependent resistor comprising an intersection between a rectangular and rounded
channel. Schematic drawings show (not to scale) the approximate membrane position in the intersection.
(c) Flow vs time characteristics of the direction-dependent resistor when an oscillating pressure source (inset) is
applied. When the pressure amplitude exceeds ≈ 20 kPa, a net significant net volume displacement is observed
during each oscillation cycle.

NH, USA), and the pumping frequency was kept constant in our experiments at f ≈
1.4 Hz.

To establish a baseline measurement of the peristaltic pump output, we conducted
the experiment without installing any of our knots, i.e. with the pump connected to the
compliant tube connected to the resistive tube. Next, we tested the effect of our nonlinear
resistive knots by installing the nested configurations [12], [1342] and [135642] between
the compliant tube and the resistive tube. The reason for using our nested knots was the
observation that the flow rate limiting level decreases with an increased number of nested
devices. We measured the flow rate output as a function of time for each configuration. To
quantify the attenuation efficacy, we measure the ratio between peak-to-peak amplitude in
flow rate (A) and average flow rate (Q̄). We define the smoothing efficacy ε = 1 − A/Q̄,
where, for smooth flow, ε � 1, and for noisy flow, ε � 0.

For our baseline measurement, using only a compliant tube to attenuate the flow rate
fluctuations, we measure a noisy flow and a low smoothing efficacy ε ≈ 0.05 (figure 9a).
The smoothing efficacy is improved by including the [12] knot, where we find ε ≈ 0.60.
Note that, with the inclusion of the [12] knot, the mean flow rate remains almost the same
as in the baseline case (Q̄ ≈ 2.51 ml min−1 at baseline and Q̄ ≈ 2.22 ml min−1 with the
[12] knot). The [1342] and [135642] knots permit lower flow rates than the [12] knots (see,
e.g. figure 4). When we include the [1342] knot in the peristaltic set-up, the mean flow rate
is reduced to Q̄ ≈ 1.17 ml min−1 and the smoothing efficacy is improved to ε ≈ 0.88.
The smoothing efficacy is further improved with the [135642] knot where, remarkably,
ε ≈ 0.96. Here, the measured flow rate oscillations are of the order of the flow rate
sensor’s noise level. Our experiment confirms that incorporating nested hydraulic knots
into a standard peristaltic pump set-up can significantly reduce pulsatile flow (to the extent
of ε ≈ 0.96) and regulate the average flow rate output by adjusting the knot sequence. For
the [12] and [1342] knots it is not unlikely that the smoothing can be improved in response
to, e.g. increasing the pumping frequency, as demonstrated by Biviano et al. (2022) using
similar nonlinear hydraulic resistances.
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5.2. Valveless flow rectification in a direction-dependent resistor
We now turn our attention to another feature of our device: the ability to intentionally
mismatch the geometries of the overlapping channels. This can potentially be used to
create a simple direction-dependent resistance such that the flow rate output will depend
on the device’s orientation (i.e. swapping the inlet and the outlet). Such diode-like fluidic
resistors have been used to develop low-Reynolds-number microfluidic devices for flow
rectification (Groisman & Quake 2004; Liu et al. 2009a). Note that, at higher Reynolds
numbers, fluid inertia can be exploited to accomplish flow rectification (Tesla 1920;
Nguyen, Abouezzi & Ristroph 2021a; Nguyen et al. 2021b).

We aim to test whether a single junction comprising one of our rounded and one
of our rectangular channels can rectify the flow (see § 2 for channel dimensions). We
connect the rounded and rectangular channel to form a [12] junction, and we then
apply pressure to channel [1] first (positive �p) or channel [2] first (negative �p). We
characterized the device similarly to our other hydraulic knots and found that the Q − �p
characteristics are indeed asymmetric (figure 9b). At negative �p, the flow is limited at
Q(−)

max ≈ −6.8 ml min−1, while at positive �p, the flow slowly converges to a limit at
Q(+)

max ≈ 11.0 ml min−1. The asymmetry is caused by the membrane occluding a larger
ratio of the conforming channel than the rectangular channel at a similar (absolute) applied
pressure. We then performed a time-dependent experiment, using two pressure controllers
to control the pressure on either end of the asymmetric device. We coded the controllers to
generate a rectangular pulse of applied pressure between positive �p = (5, 10, 20, 40) kPa
and negative −�p = −(5, 10, 20, 40) kPa, keeping the time-averaged applied pressure
〈�p〉 = 0 kPa (see inset in figure 9c). The period of each pulse was ≈ 25 s. For small
pressure pulses, �p = 5–10 kPa, the magnitude of flow rate output was approximately
independent of direction. However, when we increased the pressure to �p = 20 kPa
and �p = 40 kPa, we observed that the flow output depended on direction and that a
net volume of fluid was displaced in the positive pressure direction, consistent with the
measured Q − �p relationship in figure 9(b). We quantify the yield by the relative net
flow rate output Y = (Q+ − |Q−|)/|Q−|, which, for our applied pressure pulses, yields
Y ≈ 3 %, 6 %, 21 % and 63 % in our experiment. We thus see that the yield increases with
increasing applied pressure. It is not unlikely that the yield can be tuned by combining
several asymmetric devices in optimized hydraulic knot configurations.

6. Discussion and conclusion

We have created a microfluidic device that consists of two intersecting channels separated
by a thin membrane. By connecting multiple identical devices in different configurations,
we studied how fluid–structure interactions affect the flow capacity of an intertwined
soft channel. Our hydraulic knots exhibited flow–pressure characteristics similar to flow
limitation for conforming channels, where the output flow rate remains constant and
independent of further applied pressure after a critical pressure necessary for sufficient
elastic deformations is reached. We categorized our devices into three configurations:
serial, nested and mixed, and measured the flow vs pressure relationship for a sample of
these hydraulic knots. We observed three qualitative trends: serial knots have almost the
same flow rate limitation level, the maximum flow rate decreases with increasing nested
intersections and the flow rate level of mixed knots lies between serial and nested knots.

To understand our experimental observations better, we developed a mathematical
model inspired by the work of Christov et al. (2018) that predicts the relationship between
flow and pressure for hydraulic knots. Our model was based on low-Reynolds-number
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lubrication theory and tension-dominated membrane deformations, and we found an
expression for the Q − �p relationship of single conforming and rectangular channel
junctions. We then expanded the model to encompass the connection of multiple identical
junctions and briefly discussed the approach to coupling multiple non-identical junctions.
We found that our model compares favourably with experimental observations, and we
explained the dependence of the maximum flow rate on the network topology. Notably,
our model could quantitatively predict our hydraulic knots’ flow rate limitation levels.
However, our model consistently underestimates the actuation pressure, where the onset
of flow limitation happens.

We concluded our study by characterizing two possible microfluidic applications using
hydraulic knots. Firstly, we showed that fluid flow output from a standard peristaltic pump
set-up could be attenuated and shifted by including different nested hydraulic knots in the
hydraulic circuit downstream from the pump. Secondly, we designed a direction-dependent
hydraulic resistor based on using two different channel cross-sections (conforming and
rectangular) in our single hydraulic knot element. This, we showed, could be used to
generate a net flow rate output from an oscillatory pressure source.

In the context of physiological blood flow autoregulation in entangled capillary bed
networks, e.g. in the kidney glomerulus (figure 1b), our study indicates that flow
limitation due to fluid–structure interactions in overlapping channels is plausible. However,
additional research is required before our knot model can be applied to the flow transport
capacity of actual organs, specifically regarding the arrangement of intersecting vessels
and the geometric and mechanical properties of the vessels and surrounding tissue.
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