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Abstract. A popular description of soft membranes uses the surface curvature energy introduced by Hel-
frich, which includes a spontaneous curvature parameter. In this paper we show how the Helfrich formula
can also be of interest for a wider class of spherical elastic surfaces, namely with shear elasticity, and likely
to model other deformable hollow objects. The key point is that when a stress-free state with spherical
symmetry exists before subsequent deformation, its straightforwardly determined curvature (“geometrical
spontaneous curvature”) differs most of the time from the Helfrich spontaneous curvature parameter that
should be considered in order to have the model being correctly used. Using the geometrical curvature in a
set of independent parameters unveils the role of the Gaussian curvature modulus, which appears to play
on the shape of an elastic surface even though this latter is closed, contrary to what happens for surfaces
without spontaneous curvature. In appendices, clues are given to apply this alternative and convenient
formulation of the elastic surface model to the particular case of thin spherical shells of isotropic material
(TSSIMs).

Introduction

There is a recent interest, motivated by the development
of fluid-related microengineering [1,2], for hollow objects
with spherical symmetry (denominated here as HOSSs)
undergoing deformations [3,4]. Among these objects, a
sub-class is constituted by the well-known thin spherical
shells of isotropic material or TSSIMs, that may be just
referred to as “thin shells” in the literature [5].

For TSSIMs, it was shown long ago how the elastic
energy can be split, with reasonable approximation, into
curvature and (locally) in-plane deformation energy of a
model surface [5,6]. This considerably simplifies theoreti-
cal developments and numerical treatments compared to
a 3D approach where the material that forms the shell is
fully modeled. In sect. 1, we will first recall how, when a
TSSIM presents a stress-free reference state, 3D consider-
ations can lead to the expression of the elastic deforma-
tion energy in a 2D surface model. Then we will extend to
HOSSs the model derived for TSSIMs, with specification
of the implications. In sect. 2, we still stick to the mod-
elization of HOSSs, using instead the Helfrich model [7].
This second approach has been widely used in the field of
fluid lipid membranes, and we will compare the notion of
spontaneous curvature in both descriptions. In sect. 3, we
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detail the consequences on the role of the Gaussian cur-
vature modulus, that surprinsingly appears to be of some
importance in the shape of objects showing spontaneous
curvature, though its role is nil due to topological reasons
when a closed surface is symmetrical (i.e. without spon-
taneous curvature).

1 Deformation energy using a reference state

1.1 Thin shells of isotropic material

This subsection highlights how a concept of geometrical
spontaneous curvature can emerge from the modelization,
as a surface, of an initially stress-free thin shell of an
isotropic material. Experimentally, such objects can be
obtained by growing, or moulding in a template, some
(isotropic) material without stress. This happens, e.g.,
when making a commercial beach ball or some colloidal
shells in suspension [8].

As detailed in appendix A, the integration of the defor-
mations of the bulk material on the whole shell thickness
leads to a more handy surface model (i.e. description of
the shell conformation through a bidimensional object),
where curvature deformations on the one hand, and tan-
gential (“in-plane”) deformations are decoupled. This ap-
pears clearly in the expression of the total deformation
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energy E, as a sum of both contributions:

E =
∫∫ [

1
2
κ (c1 + c2 − 2cS)2

+κ (c1 − cS) (c2 − cS)
]
dAdef

+
∫∫ [

1
2
χ2D

(
Tr ε j

i

)2

+ µ2D

(
Tr

((
ε j
i

)2
)
− 1

2

(
Tr ε j

i

)2
)]

dAinit, (1)

Here c1 and c2 are the curvatures in the principal planes,
ε j
i is the in-plane deformation tensor, and dAdef (respec-

tively, dAinit) an infinitesimal element of the deformed
(respectively, undeformed) surface. The parameter cS , de-
nominated in appendix A as the geometrical spontaneous
curvature, is the curvature in any principal plane of the
initial (stress-free) spherical conformation (in others terms
it is the inverse of the initial radius R).

The prefactor κ (respectively, κ, χ2D, µ2D) is the mean
curvature (respectively, Gaussian curvature, 2D stretch,
2D shear) elastic modulus. Calculations show that these
moduli associated to the model surface can be expressed
using the features of the material shell (namely its thick-
ness d plus a pair of parameters to account for the elastic-
ity of a bulk isotropic material, e.g. Young modulus and
Poisson’s ratio (Y3D, ν3D), or 3D stretch and shear moduli
(χ3D, µ3D)). Moreover, the main dependence of 2D moduli
on the 3D features is the same as for thin plates [5] —and
it is recalled for the four of them in eqs. (A.5) and (A.6) of
appendix A. From these relations it can be deduced that
the quantity (1 + κ

κ ) has to be equal to the bulk Poisson’s
ratio ν3D, which is thermodynamically restricted to the
interval [−1, 1

2 ]. Hence the condition on (2D) curvature
moduli for the description of a TSSIM follows:

−2 ≤ κ

κ
≤ −1

2
. (2)

In the same spirit, the equality χ2D−µ2D
χ2D+µ2D

= ν2D = ν3D

imposes, again for the bidimensional parameters modeling
a thin shell of an isotropic material:

χ2D ≤ 3µ2D . (3)

Lastly, the requirement that, for a thin shell, the thick-
ness has to be much smaller than its radius, sets the con-
dition: √

12κ/ (χ2D + µ2D) # R. (4)

1.2 Multilayered capsules

Although calculations leading to eqs. (A.1) and (A.4) of
appendix A, and hence to eq. (1), were done for thin shells
of isotropic materials, they all result from the energetic
contribution of in-plane deformation of infinitely thin lay-
ers, summed on the whole plate thickness [5]. An anal-
ogous calculation could then be done on a shell formed

Fig. 1. Examples of shells that are not made of a single
isotropic material, and nevertheless compatible with the sym-
metry of an isotropic model surface. (a) Multiwall capsule,
made of superimposed layers of different isotropic materials.
(b) Shell made of a transversely isotropic material (i.e. uni-
axal anisotropic material) with its symmetry axis being radial
on the whole shell.

by non-similar superimposed layers [9] (also called “mul-
tiwall capsules” [10]), as sketched in fig. 1a: after summa-
tion, its energy would take the same form as eq. (1), with
2D effective parameters that would result from the con-
tribution of each layer. The difference is that each layer
cannot be considered as free from tangential constraints at
their boundaries, therefore relations (A.5) and (A.6) of ap-
pendix A (that were resulting from these precise hypothe-
ses) do not hold any more, nor their sequels eqs. (2), (3)
and (4). For what concerns the 2D parameters qualifying
the model surface of such object, the only restriction is
then the general one in 2D elasticity, i.e. the Poisson’s
ratio ν2D = χ2D−µ2D

χ2D+µ2D
belonging to the interval [1,−1]

(imposed by χ2D and µ2D being non-negative, as demon-
strated e.g. in [11]).

1.3 Other types of hollow objects with spherical
symmetry

More generally, an isotropic elastic surface with an energy
of the form given by eq. (1) is expected to model the defor-
mation of spherical shells made of any material, i.e. pos-
sibly heterogeneous or anisotropic, as long as, at the scale
of interest, their symmetries are compatible with the 2D
isotropy and homogeneity of the model surface (which was
summarized in the introduction by the acronym HOSS).
Beside layered materials, uniaxial anisotropic materials
(also called transversely isotropic materials) also fulfill
these requirements, when before deformation their sym-
metry axis is radial on the whole spherical shell (fig. 1b).
When the surface model proves to be efficient to retrieve
experimental shapes, the key clue is to establish relations
between the 2D parameters, and the 3D specificities of
the thin shell (geometry and material properties). This
was done successfully on “solid” (i.e. with shear elastic-
ity) lipid vesicles deflated by osmotic pressure [12], vesi-
cles being shells whose transversely isotropic material is
the (possibly fluctuating) phospholipid membrane.
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Fig. 2. Stability diagram of the initial stress-free spherical surface whose deformation energy is provided by eq. (1) (scanned
under its more convenient form (5) derived in sect. 2; minimizations are performed using the free software Surface Evolver [13]).

Horizontal axis: Föppl-von Karmán number γ [14]. This latter adimensionalizes the 2D Young modulus Y2D: γ = Y2DR2

κ =
4χ2Dµ2DR2

κ(χ2D+µ2D) . From darker to lighter and with increasing size, the points correspond to Poisson’s ratios ν2D = χ2D−µ2D
χ2D+µ2D

: −0.8,

−0.5, 0, +0.5 and +0.8. Upward (respectively, downwards) triangles: highest (respectively, lowest) value of κ/κ for which the
sphere conformation was stable (respectively, unstable). Broken lines with corresponding shades of grey join the average values.
Short thick grey line indicates the slope 0.5. The example shown in the unstable zone is taken just above the border: γ = 5,
ν = 0.8 and κ/κ = 6.5; in the non-spherical stable conformation the volume decreases by 34%.

1.4 Stability of the surface model

As shown in appendix B, the elastic deformation energy
per surface unit eel, which is the sum of curvature deforma-
tion energy ecurv (eq. (A.1) of appendix A) and tangential
deformation energy ein-plane (eq. (A.4) of appendix A), can
be written as a quadratic form, which is definite positive
for −2κ < κ < 01.

Out of this range, the physical occurrence of the ini-
tial stress-free spherical conformation (that may be ei-
ther stable or unstable) is not ensured. For a closed sur-
face, topological constraints are expected to reduce the
degrees of freedom of the problem, but even in this case
stability is difficult to grasp analytically. Hence we per-
formed simulations using the finite elements software Sur-
face Evolver [13], which allows to assign the different terms
of eq. (5) to the energy to be minimized. Results are sum-
marized in fig. 2 as a (γ, κ

κ ) stability diagram. The limit

1 This includes in particular the case of thin plates or shells
of isotropic material, for which −2κ < κ < −κ/2.

case where ν ! 1 and γ # 1 corresponds to an incom-
pressible surface solely driven by curvature, which is the
classical model for fluid-phase vesicles of phospholipids.
More generally, the range of κ/κ’s for which the initial
sphere is stable increases with γ, making obvious the sta-
bilizing role of in-plane deformation energy.

Simulations were also performed at constant enclosed
volume (not shown). As expected, this stabilises the initial
spherical situation, but only to a small extent (not more
than a few percent in κ/κ).

2 Comparison with Helfrich’s approach

The bending energy per surface unit expressed in (1) can
be rewritten as

1
2
κ (c1 + c2 − 2cS)2 + κ (c1 − cS) (c2 − cS) =

1
2
κ

(
c1 + c2 − 2cS

(
1 +

κ

2κ

))2

+ κc1c2 − κc2
S

(
1 +

κ

2κ

)
,
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Fig. 3. Deformation of a stress-free spherical elastic surface
of radius R (a) with dimensionless elastic parameters γ = 121
and ν2D = 0.5. Simulations use minimization of eq. (5) with
Surface Evolver [13], imposing cS = 1

R due to the stress-free
nature of the initial state. From (a) to (b), κ = 0 and the
volume enclosed is slowly decreased from V0 to V0/2, leading
to a buckled axisymmetric shape [20]. Between (b) and (c), κ
is increased stepwise while all other parameters are kept un-
changed (χ2D, µ2D, κ, cS , volume). Decreasing κ back to 0
reversively provides axisymmetric shape and elastic energy of
(b) with 0.5% accuracy, and (a) again after re-inflation. Mesh
comprises 5948 vertices; all subfigures are represented at the
same scale.

where c1+c2 is the total curvature2, and c1c2 is the Gauss
curvature.

The Gauss-Bonnet theorem states that the integral of
κc1c2 is a constant for closed C2 surfaces (i.e. differen-
tiable, and where a finite curvature can be defined ev-
erywhere, which is not the case e.g. in spherocylinders
of [15]) that do not undergo a topological change; thus
this term does not play a role in deformations without
material breaking and we can rewrite the total energy in
a form where the first term is very close to the energy
proposed by W. Helfrich [7] in 1973 for the curvature of
soft closed membranes:

E = cst +
∫∫ [

1
2
κ (c1 + c2 − 2c0)

2 + γeff

]
dAdef

+
∫∫ [

1
2
χ2D

(
Tr ε j

i

)2

+ µ2D

(
Tr

((
ε j
i

)2
)
− 1

2

(
Tr ε j

i

)2
)]

dAinit. (5)

The two parameters c0 (“Helfrich spontaneous curva-
ture”) and γeff (“effective tension”) are defined as

c0 = cS

(
1 +

κ

2κ

)
, (6)

γeff = −κc2
S

(
1 +

κ

2κ

)
. (7)

2 In the vesicles community, c1 + c2 is called “mean curva-
ture”. Since some mathematicians and mechanics specialists
compute 1

2 (c1 + c2) for the same term, we will prevent ambi-
guity by using the term “total curvature” for c1 + c2.

Fig. 4. The spherical stress-free elastic surface (a), here of
dimensionless elastic parameters γ = 20 and ν2D = 0.8, deflates
stepwise [20] into sphere (a). Subsequent stepwise increase of κ
while keeping all other independent parameters constant (χ2D,
µ2D κ, cS = 1

R , volume V0/3 where V0 is the volume enclosed
in the initial state) reversibly leads to shape (c), for which
κ = 20κ. Decreasing κ back to 0 reversively provides spherical
shape (b) with its initial elastic energy, and (a) again after re-
inflation. Intermediate shapes are obtained for κ = 5κ (d), 10κ
(e) and 15κ (f). As shown in fig. 2 and discussed in subsect. 1.4,
surfaces for which κ/κ = 10, 15 and 20 would not provide
spheres when their inner volume were re-inflated to V0; their
conformations nevertheless unambiguously show a crucial role
of κ. Mesh comprises here 4644 vertices. Subfigures (a), (b)
and (c) have the same scale, while (d), (e) and (f) are reduced
(same factor).

The curvature term is much more easy to compute in
this description than under the form (1), since both c1c2

and powers of c1 + c2 can be easily integrated on triangu-
lated surfaces (see, e.g., ref. [16] or [13]) without having to
determine separately c1 and c2. Numerical simulations of
figs. 2, 3 and 4 were computed using this expression (5).

Remark:

For a closed surface, the only additional term of eq. (5)
compared to the Helfrich formulation is the effective neg-
ative surface tension γeff . Actually this term can be “ab-
sorbed” in the deformation energy by introducing a new
reference area for the in-plane compression energy. With
this new reference state, plus reducing our purpose to
closed C2 surfaces, eq. (5) becomes

E =
∫∫ [

1
2
κ (c1 + c2 − 2c0)

2
]

dAdef

+
∫∫ [

1
2
χ2D

(
Tr ε j0

i

)2

+ µ2D

(
Tr

((
ε j0
i

)2
)
− 1

2

(
Tr ε j0

i

)2
)]

dAinit + cst,

(8)

where we introduce the in-plane deformation tensor ε j0
i =

ε j
i + 1

2 (AS−A0
AS

)δ j
i that is relative to a new reference surface

of area A0 instead of AS = 4πR2, and where δ j
i is the

Kronecker symbol. The area change after deformation is
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∫∫
Tr(ε j0

i )dAinit = A − A0 instead of
∫∫

Tr(ε j
i )dAinit =

A−AS . The surface tension term vanishes for an area A0

chosen so that γeff = χ2D
AS−A0

AS
. Using eq. (7), it means

that the new reference area is A0 = AS [1 + κc2
S

χ2D
(1 + κ

2κ )].
Here we can notice that fluid lipid vesicles, for which

the Helfrich energy was extensively used [17], can be
modeled using this description by setting µ2D = 0. For
this case, the difference in the choice of the reference
areas for either approaches can be neglected as long as
|κ|c2

S/χ2D # 1, which is always the case in lipid vesicles
(typically χ2D ≈ 250mN/m, and |κ| can be assumed as
not exceeding the order of magnitude of κ ≈ 15 kT ; in-
equality then corresponds to 1/cS % 5 · 10−10 m, which is
smaller than the bilayer thickness). Consequently, in-plane
deformation does not occur in practice for vesicles bigger
than

√
κ/χ2D ≈ a few nm (which allows to safely ignore

the γeff term in the first approach), and even in this limit it
would not affect the dimensionless equilibrium shape [18].

3 Role of the Gaussian curvature elasticity

A fundamental consequence of previous considerations is
that, contrary to what is commonly maintained in cap-
sules or vesicles physics, the Gaussian curvature modulus
κ is expected to play a role on the shape after deforma-
tion, despite the vanishing of the κc1c2 term on closed
C2 surfaces due to the Gauss-Bonnet theorem. Indeed the
Helfrich spontaneous curvature c0 depends on κ, which
explicitly appears when using the predictable parameter
cS (eq. (6)). In order to look for the effectiveness of this
remark, we numerically studied the equilibrium shape of
initially spherical isotropic surfaces, deflating them and
studying the influence of κ by varying its value while keep-
ing all the other parameters (cS , κ, χ2D, µ2D) unchanged.

For these simulations, using sets of 2D parameters that
correspond to thin shells of isotropic materials would have
allowed to add intuitive knowledge to calculations, since
most of us (authors and readers) played with TSSIM’s
many times, e.g. as beach balls. But in the special case
of TSSIM’s, 2D parameters are bound in such a way (see
eqs. (A.5) and (A.6) of appendix A) that when cS , κ,
χ2D, µ2D are kept unchanged, κ = −2µ2D/(χ2D + µ2D)
cannot be varied. We had then to use sets of 2D parame-
ters that go beyond the specificities corresponding to thin
shells of an isotropic material. Performing such simula-
tions, we could observe that the role of the sole κ may be
far from negligible. Figure 3 shows that an axisymmetric
deflated shape may show destabilization of its rim when κ
increases while all other parameters (inner volume, χ2D,
µ2D κ, cS = 1

R ) are kept constant. Indeed, bumps of shape
(c) are favoured for high κ’s by the strongly positive value
of c0 = cS(1 + κ

2κ ) % R−1 [19,18], and by the negative
value of γeff = −κcSc0 that plays in favor of surface in-
crease.

It is possible to observe even more striking effects of
κ, for sets of elastic parameters that correspond to the

unstable zone of fig. 23. In these simulations, presented in
fig. 4, a stable sphere at κ = 0 is deflated without losing
its spherical symmetry, and then only κ is altered. Even
for high Gaussian curvature moduli, stable equilibrium
shapes are obtained. The striking consequence of such a
drastic increase of κ is not only the appearance of scallop-
squash-like festoons, but, first, a general flattening of the
reduced sphere. This unambiguously shows the role and
importance of the Gaussian curvature modulus κ.

4 Discussion

Successfully modeling the deformation of a hollow object
with an elastic surface immediately raises this issue: how
does the 2D parameters connect with the 3D features of
the object? The answer being strongly entangled with the
object’s geometry, we restricted here our purpose to hol-
low objects with a spherical symmetry (HOSSs). Following
previous approaches [6,5,21], we derived the 3D materials
deformation in order to obtain two energetic contributions
related to the deformation of an isotropic solid (i.e. with
shear energy cost) surface, one dealing with tangential de-
formations (stretch, shear) and one concerned with curva-
ture deformations, for which a Helfrich form can be used
following what was successfully done in the community of
lipid fluid vesicles. In the situation where the HOSS has a
stress-free reference state, we showed how to correctly use
the Helfrich curvature form when the spontaneous curva-
ture parameter c0 (devoted to the description of naturally
bend, or “asymmetric”, surfaces) is non-zero. Through
eqs. (5), (6) and (7), we could establish the correspon-
dence between a priori determinable parameters (curva-
ture moduli κ and κ̄, and curvature cS in the reference, or
“initial”, state), and the heuristic parameter c0 that can
be obtained from comparisons between experimental and
theoretical shapes (see e.g. framework in [22] and refer-
ences herein for c0 to be used in fluid vesicles, which is
the limit case of solid vesicles where µ2D # χ2D). Appli-
cation is shown in appendix C for the description of a thin
spherical shell of an isotropic material (TSSIM).

In the general case for HOSSs, we can note that the
Helfrich spontaneous curvature c0 is clearly effective, as
discussed in [23]. This parameter is known for long to be
of utmost importance for the shape of vesicles, and in this
paper it appears as summing up the influences of cS and κ
in closed surfaces. The geometrical spontaneous curvature
cS can be determined, either because the stress-free refer-
ence state is accessible, either through independent micro-
or mesoscopic considerations such as the packing param-
eter in the surfactant monolayers that build microemul-
sions [24], or meniscus calculations between the solid parti-
cles that stabilize the interface in Pickering emulsions [23,

3 Such parameters are not “unphysical”, they just corre-
spond to situations where the constraint-free spherical con-
formation is unstable. Interestingly, as it is shown in fig. 2,
deflation may bring stability to a closed surface, that would
be unstable without volume constraints. On such systems the
effect of high values of κ is clearly first-order.
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25]. Besides, due to various technical performances, exper-
imental 3D shapes are determined nowadays with increas-
ing precision [17]. Hence comparing experimental shapes
with the theoretical ones —obtained e.g. using eq. (5)—
allows a determination of c0 that leads, with knowledge of
cS , to κ. This latter, not easily obtainable through other
considerations in the absence of free edges, was not taken
into account in most of the preeceding studies; the results
presented in this paper prove the up to now underesti-
mated importance of the Gaussian curvature modulus κ
in the shape of closed objects.

Authors thank C. Misbah for fruitful discussions, and are
greatly indebted to the conception and support of Surface
Evolver by K. Brakke.

Appendix A. Obtention of a 2D surface
model for a thin shell made of an isotropic
material

The deformation from a stress-free curved reference state
of a thin layer of isotropic material (“shell”) has been de-
rived by Niordson [26] and extensively used in ref. [21],
allowing its description with a mathematical surface de-
scribed by the vector r(s1, s2), in which s1 and s2 serve
as coordinates. Though this is not necessary for curvature
considerations, we will consider that a pair of coordinates
(s1, s2) holds for the same material point in the initial and
deformed situation: this allows us to have a Lagrangian ap-
proach for the subsequent treatment of in-plane deforma-
tions. Through integration of the 3D deformation energy
(neo-Hookean elasticity) in the whole shell thickness, one
can write the main order terms for the curvature energy
per surface unit:

ecurv =
1
2
κ

(
Tr

(
c j
i − C j

i

))2
+ κ det

(
c j
i − C j

i

)
, (A.1)

where c j
i is defined by c j

i = hikgkj (respectively, C j
i =

HikGkj), with hij (respectively, Hij) being the second
fundamental tensor of the deformed (respectively, unde-
formed) surface, and gij (respectively, Gkj) is the inverse
of the metric tensor of the deformed (respectively, unde-
formed) surface:

hij = n · ∂2r
∂si∂sj

, (A.2)

gij = (gij)
−1 =

(
∂r
∂si

· ∂r
∂sj

)−1

. (A.3)

The vector n = ( ∂r
∂s1 × ∂r

∂s2 )/‖ ∂r
∂s1 × ∂r

∂s2 ‖ is the unit
normal. These tensors are such that Tr(c j

i ) (respectively,
Tr(C j

i )) is the total curvature (see note 2 of main text)
of the deformed (respectively, undeformed) surface, while
det(c j

i ) (respectively, det(C j
i )) is its Gaussian curvature.

In the following, we will call c j
i (respectively, C j

i ) the cur-

vature tensor of the deformed (respectively, undeformed)
undeformed surface4.

Detailed calculation by Niordson show that the prefac-
tors κ and κ are, respectively, the same bending and Gaus-
sian curvature moduli than for plane thin layers (“thin
plates”) of similar thickness and material, that are dis-
played in eq. (A.6)5.

For an isotropic spherical surface, C j
i is an isotropic

tensor
C j

i = cSδ j
i ,

where cS = 1/R, called the geometrical spontaneous cur-
vature, is the inverse of the radius of the initial stress-free
spherical surface. In this particuliar but ubiquitous case,
and with c1 and c2 being the curvatures in the principal
planes, we get

Tr
(
c j
i − C j

i

)
= Tr

(
c j
i

)
− Tr

(
C j

i

)
= c1 + c2 − 2cS ,

det
(
c j
i − C j

i

)
= (c1 − cS) (c2 − cS) .

The other contribution obtained from the integration
of the deformation energy in the shell thickness amounts
at leading order to “in-plane” (2D) deformation energy
per surface unit [26,21]

ein-plane =
1
2
χ2D

(
Tr ε j

i

)2

+µ2D

(
Tr

(
(ε j

i )2
)
− 1

2

(
Tr ε j

i

)2
)

, (A.4)

where χ2D is the compression modulus (for equal compres-
sions of the surface along the principal axis), µ2D is the
shear modulus (linked to elongations with opposite val-
ues along the principal axis), and ε j

i is a 2D deformation

4 Equation (A.1) is slightly different from eq. (25) of ref. [21]
due to the definition of c j

i and C j
i . For what concerns the

definition of the mixed bending tensor that quantifies curva-
ture deformations, ref. [26] explains that selecting the differ-
ence between the undeformed and deformed state for either the
covariant components (hik −Hik)gkj or the mixed components
(hikgkj −HikGkj) only affects higher-order terms in the defor-
mation energy. Hence we chose here the second option through
a definition of the bending tensor as hikgkj−HikGkj = c j

i −C j
i ,

which allows an explicit role of the principal curvature radii
of the undeformed and deformed surfaces in the deformation
energy. Another divergence is that refs. [26] and [21] denomi-
nate hij as the “curvature tensor”. We chose not to follow this
second nomenclature, potentially deceptive since hij has the
dimension of a total curvature (i.e. inverse of a length) only
when coordinates si are lengths. So we will keep this denomi-
nation of “curvature tensor” for the mixed tensors c j

i = hikgkj

and C j
i = HikGkj .

5 There may also be discrepancies between different commu-
nities about the definition of κ. Here we used the definition that
rules in the Soft Matter community, and more particularly in
the physics of lipids vesicles, where κ is such that the bending
energy of a spherical surface without spontaneous curvature is
8πκ.
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tensor. Calculations show that both moduli are, at lead-
ing order, the same as for thin plates with zero tangential
constraints at their upper and lower boundaries [5].

The first important consequence is that the 3D de-
formations of the shell can be decoupled, using an elastic
isotropic surface model, into 2D elasticity on the one hand,
plus (total and Gaussian) curvature elasticity on the other
hand. Both contributions have to be integrated on the
whole object. Following what is done in physics of curved
membranes, we chose to integrate the curvature energy
ecurv on the deformed surface. The advantage is that adi-
mensionalizing an infinitesimal element of the deformed
surface dAdef with a squared total curvature, or a Gaus-
sian curvature, provides the angles that accounts for local
deformation independently from scale (hence from possi-
ble in-plane deformations), which is not the case with an
infinitesimal element of the undeformed (initial) surface
dAinit. With regard to ein-plane: in a linear model treat-
ing small deformations, integration can be performed ei-
ther on deformed or on undeformed surface. In order to
cover a larger spectrum of deformations, we adopted the
adimensioned surface Lagrangian finite strain tensor [27]
ε j
i = 1

2 (gikGkj − δj
i ) and integrated in on the undeformed

surface.
In summary, summing both curvature and 2D defor-

mation energies leads to the (main text) expressions (1)
and/or (5) for the total deformation energy, where the 2D
parameters characterizing the model surface can be ex-
plicited using 3D features (thickness d of the shell, Young
modulus Y3D and Poisson’s ratio ν3D of its isotropic bulk
material):

µ2D =
Y3Dd

2(1 + ν3D)
; χ2D =

Y3Dd

2(1 − ν3D)
(A.5)

κ =
Y3D

12(1 − ν2
3D)

d3;

κ = (ν3D − 1) κ = − Y3D

12(1 + ν3D)
d3. (A.6)

Appendix B. Comparison between curvature
and in-plane deformation energies;
interpretation of κ

The curvature part of the energy expressed in eq. (1) can
be re-written as a quadratic form

ecurv =
1
2

(
κ +

1
2
κ̄

)
(c1 + c2 − 2cS)2 − 1

4
κ̄ (c1 − c2)

2 .

(B.1)
Obviously, this form is definite positive, and hence

the curvature energy of an elementary surface is stable,
if −2κ < κ < 0 (contrary to κ, κ can take negative val-
ues). In this formulation, − 1

2 κ̄ in the second term can be
seen as the modulus linked to the cost of non-isotropic
curvatures (such that c1 (= c2). The first term is obviously
linked to the cost of total curvature away from cS , with a
modulus κ + 1

2 κ̄.

A parallel can be drawn with the in-plane deformation
energy that writes

ein-plane =
1
2
χ2D (ε1 + ε2)

2 +
1
2
µ2D (ε1 − ε2)

2 , (B.2)

with ε1 and ε2 the eigenvalues of the deformation tensor.
There is a formal analogy between the two energies, one
computed from the tensor cj

i − C j
i (cf. appendix A) and

the other from the tensor ε j
i . Non-isotropic curvature gives

rise to an energy with a modulus −1
2 κ̄ for eq. (B.1), and

similarly non-isotropic in-plane deformation gives rise to
an energy with a prefactor µ2D.

Equation (B.2) then provides another interpretation of
the physical meaning of the Gauss curvature modulus κ̄,
which is the consequence of non-isotropic curvatures.

Appendix C. Helfrich approach applied to
thin shells made of an isotropic material

Applying relations (6) and (7) to a thin shell of an
isotropic material (TSSIM), which can be modeled by
a surface with 2D parameters covered by eqs. (A.5)
and (A.6), leads to

γeff =
1 + ν3D

2R2
κ; c0 =

1 + ν3D

2R
κ. (C.1)

The second relation clearly reminds that c0 is not a
geometric quantity like cS = 1/R, but indeed a parameter
that also takes into account elastic features (here ν3D),
and that can vary between 0 and 3

2R on the whole range
of accessible Poisson’s ratios. This approach allowed com-
putation of shapes of deflated TSSIMs in ref. [20].

Domain of validity

From the discussion at the end of sect. 2, we infer that
modelling a thin spherical shell of an isotropic material
(TSSIM) of thickness d with a spherical elastic surface of
radius R requires |κ|c2

S/χS # 1 (with cS = 1/R), which
amounts to ( d

R )2 # 6 1+ν3D
1−ν3D

. This is always the case for
thin shells as long as the material is not unusually auxetic
(auxeticity qualifies materials where ν3D < 0, the lower
limit being, as for all solids, ν3D = −1).

The full form to be used for a deformed spheri-
cal shell then writes, after replacing the parameters of
eqs. (A.5), (A.6) above in eq. (5):

Esph.TSIM = 4πκ +
Y3Dd3

12(1 − ν2
3D)

×
{ ∫∫ [

1
2

(
c1 + c2 − 2

1 + ν3D

2R

)2

− 1 + ν3D

2R2

]
dAdef

+
∫∫

6
d2

[
(1 − ν3D) Tr

(
ε2

)
+ ν3D (Tr ε)2

]
dAinit

}
.

(C.2)
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