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Bubbles confined between the parallel walls of microchannels experience an increased drag
compared to freestanding bubbles. We measure and model the additional friction from the walls,
which allows the calibration of the drag force as a function of velocity. We then develop a setup to
apply locally acoustic waves and demonstrate the use of acoustic forces to induce the motion of
bubbles. Because of the bubble pulsation, the acoustic forces—called Bjerknes forces—are much
higher than for rigid particles. We evaluate these forces from the measurement of bubble drift
velocity and obtain large values of several hundreds of nanonewtons. Two applications have been
developed to explore the potential of these forces: asymmetric bubble breakup to produce very well
controlled bidisperse populations and intelligent switching at a bifurcation. © 2011 American
Institute of Physics. �doi:10.1063/1.3579263�

I. INTRODUCTION

Recent years have seen the rise of digital microfluidics,
in which tiny droplets or bubbles are handled as discrete
volumes of fluids.1 We focus in the present work on mi-
crobubbles generated in flow focusing devices, bubbles char-
acterized by very reproducible volumes.2,3 These mi-
crobubbles may act as tiny samples in lab-on-a-chip
devices.4,5 Microbubbles can also act as simple spacers be-
tween droplet samples, to avoid any contact and contamina-
tion between them.6 Another application is their collection
out of the microfluidic chip to obtain contrast agents7 or to
fabricate new porous materials.

We further consider bubbles which diameters may ex-
ceed the height of the microchannel geometry, defined by the
two parallel plates and a rectangular cross-section. Under
confinement, bubbles will therefore loose their sphericity so
as to adopt a shape that may be assimilated to a “french
cheese” or “pancake.” This geometrical confinement has to
be contrasted with the confinement of bubbles inside tubes of
circular cross-section, which have drawn a lot of attention on
their vibrations.8

In the perspective of developing noncontact handling
methods so as to avoid any contamination of the operator, the
control of bubble trajectories is of major importance, and
possibly with selective control. This would, for instance, al-
low to sort bubbles, to control reactions �thermal, chemical,
biological� to perform on lab-on-chips.

We propose to take advantage of acoustic waves to ma-
nipulate bubbles. The generator of acoustic waves, a piezo-
electric element, can be miniaturized and integrated in a
chip. Such devices have been developed to sort solid
particles9,10 and biological cells11 using acoustic radiation
forces. However, the specificity of bubbles is their pulsation

near a resonance frequency, giving rise to Bjerknes
forces12–14 that are much larger than radiation forces on
poorly compressible particles. For instance, these forces are
helpful to act on bubbles rising in a liquid pool.15

In order to evaluate the efficiency of the applied acoustic
forces, one can estimate the resisting drag forces. This way
of reasoning is close to the one developed in the famous
electrical force measurement on oil droplets by Millikan.16

However, in Millikan’s experiment the droplet is in plain air
and the Stokes drag formula is valid, while in the present
microfluidic configuration, the bubble is confined between
walls and the drag is increased by friction with the walls. Our
system is therefore close to that of a bubble in a typical
Hele–Shaw configuration, studied by Maruvada et al.17 The
authors of this study assume a specific frictional behavior,
that of a pure liquid, and do not take into account the pres-
ence of surfactants. Nevertheless, these surfactants are nec-
essarily added in solution to prevent any undesirable bubble
coalescence, when the bubble concentration is high: because
surfactants can rigidify the interface, their impact has to be
included in the analysis for the friction. Note that Fuerstman
et al.18 have studied the pressure drop of a flowing bubble in
a thin microchannel, but for the case where the bubble takes
the whole width of the channel, touching the four walls of
thin channels with a rectangular cross-section.

This paper is organized as follows. The materials and
methods are given in Sec. II with two configurations of mi-
crofluidic channels: the first for the study of the drag force
that we calibrate with the buoyancy force, and the other one
for acoustic forcing. We present in Sec. III measurements of
the drag force and introduce a new model for this force,
which takes into account the diverse behavior of surfactants
and is validated by measurements. Then we evaluate the
acoustic force experienced by deviated bubbles in Sec. IV.
Section V is devoted to the description of applications wea�Electronic mail: philippe.marmottant@ujf-grenoble.fr.
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have specifically developed: size sorting, automated switch-
ing, and asymmetric breakup at a bifurcation.

II. THE ACOUSTOMICROFLUIDIC DEVICE

A. Experimental setup

Acoustically operated microfluidic circuits are built us-
ing soft-lithography techniques.19 The circuit consists of two
layers. The first layer includes the channel and liquid plus
gas inlets which are molded in a polydimethylsiloxane
�PDMS� �Sylgard 184, Dow Corning� so as to create a flow
focusing geometry as shown in Fig. 1. The second layer of
the circuit includes the acoustic generator consisting of a
glass rod �cut from a microscope slide� molded and covered
by a thin 100 �m layer of PDMS. A piezoelectric ceramic
�PIC151, 1 mm thick, Piezo-Instruments� is glued with ep-
oxy to one end of the glass rod. The two layers are finally
bonded by air plasma exposure �Harrick Plasma� with the
rod perpendicular to the channel, as shown on Fig. 1. This
results in a glass rod which is therefore not in direct contact
with the channel, but separated by the thin 100 �m layer of
PDMS.

The gas thread flowing through the flow-focusing orifice
is symmetrically pinched by water, creating microbubbles
further dragged by the liquid. The liquid is de-ionized water
with 10% commercial dishwashing detergent �Dreft, Procter

and Gamble�. A syringe pump �11 Pico Plus, Harvard Appa-
ratus� is used to push the liquid in the channel. The gas �pure
nitrogen� is under controlled pressure. The liquid flow rate Ql

and the gas pressure Pg are the control parameters for the
production and the flow of the bubbles. The standard values
are around 120 �l min−1 for Ql and 7 kPa for Pg. The pro-
duced bubbles are flowing in channels whose thickness vary
between h=50 �m and h=100 �m. They are always in
contact with top and bottom channel walls, and their aspect
ratio varies in the range 1.3–5.2.

The bubble flow is recorded with a CMOS-camera �Mar-
lin F131B, AVT� through an inverted microscope �IX70,
Olympus�. Post-treatment of images is used to extract the
bubbles’ characteristics such as their radii R and their longi-
tudinal and transverse velocities Ux and Uy. The average liq-
uid velocity V, along x, is obtained by dividing the flow rate
Ql by the cross section of the channel: height h �between 10
and 100 �m� times its width w �1000 �m in all our experi-
ments�.

An efficient coupling between the bubble flow and the
ultrasound field is obtained by integrating the acoustic source
into the microcircuit, limiting excess attenuation from the
PDMS polymer matrix. The choice of a glass rod put per-
pendicular to the main flow is advantageous as it possesses
well-defined resonance modes when excited from the piezo-
electric transducer for certain frequencies. The signal sent to
the transducer is produced by a function generator
�AFG3102, Tektronik� and is amplified �7600M, Krohn Hite�
up to 50 V.

B. Characterization of the resonance modes of the
glass rod

The resonance modes along the main axis �the y-axis in
Fig. 1� of the glass rod are studied as they are responsible for
the transverse acoustic forces on the bubbles. In order to
keep a unidimensional vibration pattern, the allowed fre-
quencies are limited to l�� /2�L, where �=c / f is the
wavelength of sound in glass, and where l and L are the
width and length of the glass rod. For l=3.7 mm, L
=25 mm, and c of the order of 1000 m s−1 �as measured,
see Fig. 2�b��, the frequency is indeed contained between 20
and 140 kHz.

The acoustic pressure on the surface of the glass rod is
measured by a needle hydrophone �NP10–3, Dapco�. This
uncalibrated hydrophone is used to detect the position of the
nodes and antinodes at each frequency, rather than absolute
acoustic amplitude. A sweep between 20 and 140 kHz has
been performed to identify the resonance modes. For a spa-
tial exploration, a homemade micropositioning system with
10 �m of precision has been used to perform steps of
0.1 mm along the y-axis. The lubricated needle is in contact
with a free glass rod, not molded in the PDMS matrix.

We measure the wave number k of the vibration patterns
�Fig. 2�a�� along the y-axis, taking into account the fact that
the wavelength of the pattern is half of the vibration wave-
length, because the needle hydrophone gives only the abso-
lute value of the acoustic signal. We have access to the speed
of the standing wave through the relation c=� /k, and we
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FIG. 1. �Color online� �a� Schematic geometry of an acoustically coupled
microchannel: the channel is filled with water and the main bubble flow is
along the x direction. The channel is very thin in the z direction. These axes
are attached to the channel. Light gray: the glass rod, separated from the
channel by a thin layer of elastomer. �b� Photograph of a cut section of the
PDMS perpendicular to the microchannel x-axis. The position of the glass
rod is above the thin channel, separated by a 100 �m PDMS layer. �c�
Photograph of the circuit, along z direction, without the acoustic glass rod.
Here it was tilted by 90° around the main axis for the drag force calibration,
with gravity vector along y-axis. For acoustic measurements, the channel
was horizontal, and gravity vector along the z-axis.
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find that c varies from 450 to 1000 m s−1 between 20 and
120 kHz �Fig. 2�b��. These values are typical of the first
antisymmetric Lamb waves, in agreement with the work of
Haake.10 The vibrations emitted by the glass rod propagate to
the channel and liquid, the PDMS attenuation being small.
We measured an attenuation of longitudinal waves in
bulk PDMS of 7 dB cm−1 MHz−1,20 meaning an attenuation
by propagation of 0.007 dB �through 100 �m at 100 kHz�,
much smaller than the transmission coefficient at the glass/
PDMS and PDMS/water interfaces. The wavevector for the
vibration of the liquid in the channel is therefore k=kLamb,
and thus slightly different from the wavevector in water kw.

We measured the vibration of the channel wall in situ,
with a distant vibrometer based on a LOFI system �Laser
Optical Feedback Interferometer�,21 in order to check that the
vibrations are localized near the glass rod. The system, based
on an autodyne interferometer, is particularly efficient and
easy to implement. Its main features are that it is self-aligned
and extremely sensitive, thanks to a signal resonance ampli-
fication phenomenon. For this study, the setup was composed
of a Nd:YAG �neodymium-doped yttrium aluminum garnet�
microlaser whose beam was frequency shifted by acousto-
optic modulators and then injected into a microscope. When
the beam is focused on a scattering interface, we let the
backscattered light be reinjected into the laser, causing its

intensity to be modulated at the shift frequency. If the inter-
face under investigation is vibrating, there is a modulation of
this frequency by the Doppler effect, generating sidebands
around the shift frequency in the laser power spectrum. The
vibration amplitude of the interface is then gathered from
those sideband amplitude using a Bessel analysis.

The results obtained for the amplitude of vibration of the
channel �here filled with air� just below the glass rod are
summarized in Fig. 2�c�. The vibration amplitude is much
attenuated out of the borders of the glass rods. In conclusion,
the vibration is localized in the channel, and the variation in
acoustic amplitude follows that of the glass rod.

III. DRAG FORCE FOR A CONFINED BUBBLE
IN HELE–SHAW CONFIGURATION

A. Bubble shape in the surfactant solution

The shape of a bubble confined in a microchannel is
illustrated in Fig. 3: near the top and bottom channel walls, it
possesses almost flat faces lubricated by thin liquid films,
while the side surface is curved. Because of the presence of
surfactant molecules in water, the wetting of the channel sur-
faces is always satisfactory, meaning a vanishing contact
angle. The shape of the bubble is parametrized by the chan-
nel thickness h, and the outer radius R, easy to measure on
the image of the bubble when projected perpendicularly to
the planes.

B. Measurements under flow and transverse applied
force

The drag force Fdrag in such a confined geometry differs
notably from the Stokes expression for a sphere in the bulk
of a fluid FStokes=6��R�V−U�, where � is the dynamic vis-
cosity of the liquid, R the radius of the bubble, V the average
speed of the fluid, and U the bubble speed.

We measured the bubble velocity in a fluid stream V
under a transverse applied force Fy. To obtain a controlled
applied force, we just used the buoyancy force: in the ab-
sence of ultrasound, the circuit is inclined with a variable
angle � �from 0° to 90°� around the x-axis. The gravity vec-
tor g being perpendicular to the flow �see Fig. 1�b��, the
bubbles undergo the buoyancy force and are pulled up in the
transverse direction. This external force is given by
Fapplied,y =�	�R2hg sin �, where �	 is the difference of den-
sity between air and water, and where we assume cylindrical
bubbles as an approximation of their real shape, shown in
Fig. 3. Due to the low Reynolds number �between 0.1 and 1�,
a steady state of the velocity is quickly reached so that
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FIG. 2. �Color online� Vibration of the free glass rod, before molding in
PDMS: �a� spatial-frequency diagram of the resonating rod. y=0 corre-
sponds to the free end, the forced end �the piezoelectric� is approximately at
y=25 mm. The color bar indicates the zero to peak voltage values measured
on the hydrophone. �b� Wave speed obtained with the spatial Fourier trans-
form, same scale of the abscisses as in �a�; �c� internal vibration of the top
channel wall, after molding and assembly of the circuit, measured just below
the glass rod whose limits are shown by dotted lines, along the channel
�x-axis�. Each point is an average of the vibration in the width of the channel
�f =62 kHz�.
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FIG. 3. �Color online� Sketch of the shape of the bubbles confined by the
upper and lower faces of the channel.
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Fdrag+Fapplied=0. The drag force components are therefore
Fdrag,x=0 and Fdrag,y =−Fy. For a Stokes drag we would thus
obtain Ux=V and Uy =Fy /6��R.

The measurements displayed in Fig. 4 show that this is
not the case: Ux /V and Uy /Fy�R are not the expected con-
stants 1 and 1 /6�, but depend on the bubble velocity. Here
we have nondimensionalized the bubble velocity using

Ca =
�U




the capillary number, constructed with the norm of the
bubble velocity U= �Ux

2+Uy
2�1/2 and the surface tension 


�measured to be approximately equal to 35�10−3 N m−1 for
our surfactant solutions�. A first phenomenological descrip-
tion of the effect of the capillary number is to fit the mea-
sured values with power laws, which is shown on Fig. 4. The
effect of bubble size and of channel height will be treated in
the following section.

C. Model for the drag force

In the present configuration, we model the drag force as
the sum of a viscous drag �of the liquid on the bubbles� and
a friction force �between the bubbles and the walls of the
channel�, so that the total drag is

Fdrag = afluid
12��R2

h
�2V − U� − awall�h�� h

R
�3

Ca	�−1

U ,

�1�

where h is the height of the channel and Ca=�U /
 is the
capillary number based on the norm of the bubble velocity
vector.

The first term of the right-hand side is the friction from
the bulk fluid. This equation has been used by Maruvada et
al.,17 who derived an expression for the Stokes drag for a
cylindrical bubble, with slip conditions, following the analy-

sis of Taylor and Saffman in Hele–Shaw configuration.22 We
add a free parameter afluid to account for a deviation from a
purely cylindrical bubble and to account for the influence of
surfactants that would change the slip conditions.

The second term of the right-hand side, the friction with
the walls, is a correction to the formula17 and extends it for
the presence of surfactants. This presence modifies the varia-
tion of the friction forces with velocity. We introduce phe-
nomenological coefficients awall and �, depending on the na-
ture of the surfactant. In the following we present a
derivation of the equation we use for this friction force with
the walls.

Such a phenomenological approach is classical in slip-
ping foam studies with different types of surfactants, but here
we feel it is necessary to recall its foundations. First, we
introduce the phenomenological exponent �. A dimensional
analysis shows that the friction force scales like Fwall


��U /hF�AF,23 where hF is the film thickness and AF is the
area of friction �see Fig. 5�. In the case of a free interface
�pure water� or an interface with very mobile surfactant mol-
ecules, the Bretherton theory24 states that the film thickness
increases with bubble velocity �“aquaplaning” effect or
Landau–Levich lubrication� so that hF
hCa2/3, while the
friction area varies like AF
h2Ca1/3. The friction force
therefore may be expressed as Fwall
�hCa−1/3U �and is thus
proportional to U2/3�. This is in contradiction to the analysis
of Maruvada et al.17 where the friction area AF was incor-
rectly set to be a constant �this yields a force proportional to
U1/3�. In the case of immobile surfactants, the surface is
rigid, and it has been shown23 that hF
hCa1/2, while the
friction area is constant, so that Fwall
�hCa−1/2U
U1/2.
See Table I for a summary.

These two cases, mobile and immobile surfactants, can
be extrapolated to any type of surfactants by postulating that
the force may be expressed as Fwall
�hCa�−1U �force pro-
portional to U��, the value of �, between 1/2 and 2/3, reflect-
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FIG. 4. �Color online� Measurements of the axial bubble velocity Ux in-
duced by the stream velocity V and deviation velocity Uy induced by a
transverse force Fy, as a function of the capillary number based on the norm
of the bubble velocity. Dashes: Saffman–Taylor model for a bubble in pure
water, which neglects wall friction �awall=0�. Several channel thicknesses
are tested: �, h=50 �m; �, 70 �m; �, 100 �m. The bubble radii vary
from 40 to 80 �m for all thicknesses. Power-law fits are plotted as dashed
lines, with exponents of 0.52 for the scaled Ux and 0.56 for the scaled Uy.
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FIG. 5. �Color online� Cross-section of �a� one isolated bubble; in white the
gas. �b� Comparison with a foam composed of one layer of bubbles. The
insert is an enlargement on the liquid corners where dissipation is localized
in both cases.

TABLE I. Summary of the friction models with mobile and immobile sur-
factants.

Surfactant Film thickness Friction area Friction force

Mobilea hF
hCa2/3 AF
h2Ca1/3 Fwall
�hCa−1/3U

Immobileb hF
hCa1/2 AF
cst Fwall
�hCa−1/2U

aReference 24.
bReference 23.
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ing the mobility of the surfactant. This variable exponent is
widely used in slipping foam studies,25 as well as in foam
drainage or rheology characterization.26

Second, we have also introduced the influence of the
ratio of the thickness to the bubble size h /R. We are inspired
by the predictions of Terriac et al.27 for bubbles in contact
�thus forming a foam� in Hele–Shaw cells. They consider
that dissipation is actually localized within liquid corners,
and this is the radius of the liquid corners that counts �see
inset of Fig. 5�. In the case of foams, the liquid corner as a
radius equal to the radius of the Plateau border, i.e., the me-
niscus joining liquid to walls �see Fig. 5�b� for the definition
of rPlateau�. Here the liquid corner has a radius equal to half of
the channel height rPlateau=h /2. Equivalently, the bubbles in
a foam have the same shape as isolated bubbles when
rPlateau=h /2. Setting this value for the liquid corner size, the
analysis of Terriac for a bubble of spanwise diameter 2R
�since the spanwise width of the liquid corner at the walls
sets the total friction28� yields a friction force Fwall


2R
�h /R�−2��h /R�3Ca��
�h��h /R�3Ca��−1U, that we use
in Eq. �1�.

In conclusion, the total drag force is given by Eq. �1�, in
which the phenomenological coefficients ��, afluid, and awall�
will be adjusted in experiments.

The projections of Eq. �1� onto the x- and y-axes give the
bubble velocity components Ux and Uy as a function of the
external flow V �here along the x-axis� and transverse force
Fapplied,y �along the y-axis�,

Ux

V
� 24��R

h
�2afluid

awall
�� h

R
�3

Ca	1−�

, �2�

�hUy

Fapplied,y
=

1

awall
�� h

R
�3

Ca	1−�

. �3�

To obtain Eq. �2�, we have assumed Ux
V.
We plot in Fig. 6 the measured bubble velocity compo-

nents Ux and Uy scaled by V�24��R /h�2 and Fapplied,y /�h,
respectively, versus �h /R�3Ca. All the points collapse on

power law curves as expected from Eqs. �2� and �3�, for a
wide range of conditions: h ranges from 50 to 100 �m, R
from 34 to 83 �m, and V from 7 to 33 mm s−1. With this
new rescaling, data points are slightly less dispersed than in
Fig. 4. The dispersion in the values of the scaled Uy drops
from �29% down to �27%. Additionally, the range of the
scaled data is larger by one order of magnitude. We therefore
use this new scaling designed to describe large range of
variations in channel thickness and bubble radius. So we are
able to adjust the parameters �, awall, and afluid in Eqs. �2�
and �3�.

We now discuss the value of �, the exponent of the
Capillary number in Eq. �3�. According to Denkov et al.,23

this exponent reflects the nature of the tangential mobility of
the surfactant molecules on the surface of the bubbles. The
value �=0.51 corresponds to tangentially immobile surfac-
tants. This may be due to large Marangoni stresses. Here the
concentration of surfactant in the solution is high, 40 times
the critical micellar concentration, and the surface tension
drops down to 
=35�10−3 N /m, instead of 
w=73
�10−3 N /m for a clean interface. Surfactants can therefore
create Marangoni surface stresses up to �
=
w−
=38
�10−3 N /m. The ratio of these stresses to viscous stresses
may be expressed as �
 /�U=�
 /
�Ca−1. In the present
experiment this ratio is always above 500 �value at largest
velocity�, meaning that surfactants create surface stresses
that are high enough to immobilize the surface in front of
viscous stresses.

This phenomenon is important because it governs the
nature of the friction on the walls of the channel. The value
of the coefficient afluid=4.53, that gives the friction from the
flow around the bubble see Eq. �1�, is substantially higher
than 1, which also suggests that instead of a slip velocity
there is an immobile velocity at the surface.

In conclusion, we have calibrated the friction force act-
ing on confined bubbles. We are thus able to deduce the
value of any transverse external force acting on the bubbles
from the measurement of their drift velocity �any external
force is equal and opposite to the transverse drag�. According
to Eq. �1� and from several calibrations, we end up with an
empirical formula that may be expressed as Fapplied,y

�10.9�h��h /R�3Ca�−0.49Uy.

IV. THE ACOUSTIC BJERKNES FORCE
FOR A CONFINED BUBBLE

A. Measurements from deviation velocity
in the acoustic field

A measurement of acoustic force applied to the bubbles
is obtained when considering the acoustic deviation velocity
Uy of the bubbles in the absence of gravity effects �horizon-
tal channel� and during the emission of an ultrasonic stand-
ing wave.

We plot in Fig. 7 the results obtained for the acoustic
force as a function of the bubble radius under constant acous-
tic conditions �frequency of 91 kHz, amplitude of the electric
signal sent to the piezo-50 V�. The first striking feature is the
large amplitude of the acoustic forces: they amount to nearly
200 nN, enough to counteract the friction forces that are high
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FIG. 6. �Color online� Adimensioned velocity components Ux �top� and Uy

�bottom�, as a function of �h /R�3Ca, proportional to the total bubble velocity
U. Lines: power fits with Eqs. �2� and �3� are �=0.51, awall=10.9, and
afluid=4.0. Only the values Ux /V�0.5 are fitted. Same symbols than in
Fig. 4.
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in this geometry. The second feature we notice is that the
sign of the force changes with the size, with a critical radius.

B. Modeling the bubble pulsation in a confined
channel

To interpret these results, we are going to first model the
pulsation of the bubble. Indeed the compressible volume of
gas oscillates in response to the oscillating acoustic pressure.
For small acoustic amplitudes, the response is linear and de-
scribed by the same equation as that of a forced mechanical
mass–spring oscillator. The surrounding fluid displaced dur-
ing the pulsation plays the role of a mass, while the com-
pressibility of the gas plays the role of a spring.

The Minnaert formula13 gives the resonance frequency
for spherical air bubbles in water,

fr
3D =

1

2�
�3�P0

	

1

R
, �4�

with � the gas polytropic exponent, P0 the pressure in the
liquid, and 	 the liquid density. This gives the approximate
relation fr ·R�3 m s−1 at resonance. In our experiments, the
bubbles are confined and pulse in a different manner.
Prosperetti29 gave the relation between the resonance fre-
quency and the size of a purely cylindrical bubble,

fr
2D =

1

2�
� 2�P0

log�S/R�	
1

R
, �5�

with S the radius of a finite cylindrical region occupied by
the fluid. This length could be interpreted as a cutoff length
associated with the finite channel size, channel elasticity, or
fluid compressibility. Here, fluid compressibility of water
�with a bulk modulus of 2.2 GPa� can be neglected when
compared to the PDMS channel elasticity �with Young’s
modulus of the order of 1 MPa �Ref. 30��. Because the
acoustic pressure levels are fractions of 1 kPa �see further�,
we expect that side boundaries, as well as top and bottom
boundaries, are deformed during the bubble oscillation. As a
consequence, the closest side boundaries, situated at half the
channel width, do not completely impede the motion. We
have therefore chosen for the length S the channel half-
width, considering that it is the furthest distance where fluid
inertia is present when channels are very soft. The channel

width is 1000 �m in all our experiments, and bubbles of
radius of 20 �m, we obtain fr

2D ·R
1·3 m s−1 and slightly
more for larger bubbles.

For the present work, we impose a single value of K
= fr ·R for the whole range of diameters explored, that lies
between the two–dimensional �2D� and three-dimensional
�3D� case, so that

fr
confined = K

1

R
. �6�

We define the oscillation of the pressure in a standing
wave as

p = P0 + PA sin�ky�cos��t� , �7�

where f =� /2� is the frequency of oscillation and k is the
wave vector. The two cases of confined bubbles �assumed
cylindrical for simplicity� and free bubbles �spherical� are
investigated here to show the effect of the confinement. We
consider that the bubble radius and volume vary according to

R = R0�1 − � cos��t − ��� , �8�

V = V0�1 − n� cos��t − ��� , �9�

where ��t�
1 and n is equal to 2 or 3 for cylindrical or
spherical bubbles, with respective initial volumes V0,n=2

��R0
2h and V0,n=3=4 /3��R0

3, R0 being the rest radius in
both cases.

The relative oscillation amplitude � can be obtained by
solving the linearized version of the Rayleigh–Plesset
equation,29 that falls into the one of a forced harmonic oscil-
lator. We obtain for the amplitude of the oscillation

� =
PA sin�ky�

	R2

1

���r
2 − �2�2 + ���r/Q�2

, �10�

where Q is the quality factor of the oscillator. We have as-
sumed a constant confinement such that the prefactor present
in the original formula of Ref. 29 is �n−2� / �1−R /S�n−2�1.
The confinement has no effect on the phase difference, which
obeys

cos��� =
�r

2 − �2

���r
2 − �2�2 + ���r/Q�2

. �11�

C. Bjerknes force on a compressible bubble

The origin of the deviation force is the Bjerknes force,
which occurs when the volume of the object pulsates under
ultrasound. Because of this volume pulsation V�t�, the oscil-
lating acoustic pressure can have a nonvanishing effect on
average. The pressure force on an object which is small com-
pared to the wavelength may be expressed as �S−pndS=
−V�p, with the pressure gradient �p. The Bjerknes force is
the average of this oscillating pressure force,14

FBjerknes = �− V�t� � p�t�� , �12�

where � · � is the time average over one cycle of oscillation,
which does not vanish because V oscillates for a bubble,
unlike a rigid particle.
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FIG. 7. �Color online� Bjerknes force vs the radius of the bubbles at fixed
frequency �91 kHz�; dots: experimental data; dashes: Eq. �14�; line: Eq.
�15�; channel height h=25 �m. Inserts: pictures of bubbles with radii of 17
�top� and 63 �bottom� �m.
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Using Eqs. �7� and �9� in Eq. �12� and calculating the
time average, we obtain an expression for the Bjerknes force,

FBjerknes = n�V0��p�m
1
2 cos��� . �13�

This expression shows that the Bjerknes force is directly
proportional to the cosine of the phase difference. It is well
known that any oscillator responds with a phase difference of
0 when it is excited with a frequency smaller than its reso-
nance frequency, and a phase difference equal to � for larger
excitation frequencies. According to that, the Bjerknes force
can change its sign with this phase difference.

Keeping the excitation frequency constant, we see that a
resonance radius Rr exists, obeying f ·Rr= fr ·R. From this
relation we expect that bubbles smaller than this resonance
radius are below resonance, i.e., they oscillate with a fre-
quency below their resonance frequency and thus have a
phase difference of 0 with excitation. Therefore, the Bjerknes
force in Eq. �13� will be positive �toward high acoustic pres-
sure� for bubbles smaller than the resonance radius, and
negative �toward low acoustic pressure� for bubbles bigger
than the resonance radius.

Introducing the microfluidic device geometry depicted in
Fig. 1 �see Sec. II, for details�, we consider a channel ori-
ented along x and a transverse standing wave along y created
by a glass rod, placed slightly above the channel, and driven
to resonance by a piezoelectric transducer at a frequency f .
Assuming the glass rod vibration is transmitted into the
channel, bubbles flowing underneath the glass rod experi-
ence the spatially modulated acoustic field p�y , t�= P0

+ PA sin�ky�cos��t�, with k the wavenumber of the standing
wave along the glass rod with velocity c. Note that this
wavenumber characterizing the extended acoustic source dif-
fers from that of the acoustic wave propagating into water,
which is given by kw=� /cw, with cw the sound velocity in
water.

Finally, we are able to find an expression of the Bjerknes
force, writing the pressure gradient amplitude as ��p�m

=kPA cos�ky� and using Eq. �10� in Eq. �13�,

FBjerknes
2D = 2�kh

1

kw
2 EA

2D sin�2ky�

�
��r/��2 − 1

���r/��2 − 1�2 + ��r/Q��2 , �14�

FBjerknes
3D = 4�kR

1

kw
2 EA

3D sin�2ky�

�
��r/��2 − 1

���r/��2 − 1�2 + ��r/Q��2 . �15�

We have placed in evidence the acoustic energy density EA

= PA
2 /4	cw

2 of the standing wave, composed of two counter-
propagating waves of energy EA� = �PA /2�2 /2	cw

2 . These ex-
pressions are similar except for one difference: the prefactor
of the first one depends linearly on the height of the channel
h, whereas the other depends linearly on the radius of the
bubble R.

We now evaluate the order of magnitude of these forces
in the 3D case. This acoustic energy has a simple meaning:

4EA is the radiation pressure exerted on a totally reflecting
surface by a propagating wave. For a comparison, we write
the acoustic force for a bubble and a rigid particle computed
by King,31

FBjerknes
max

�R2 

4Q

kwR

k

kw
EA 
 500EA, �16�

FKing

�R2 
 kwREA 
 0.01EA, �17�

where we have evaluated these orders of magnitude by con-
sidering a bubble in water at resonance, the 3D Minnaert
formula implies kwR=2�frR /cw�0.012, typical values of
k /kw=cw /c�1.5 and � cos���
Q�1. The acoustic force
on a solid particle of the same size is much less than with a
reflecting surface, and more than four orders of magnitude
less than the Bjerknes force.

D. Comparison with the measurements

The fit of force measurements with the 2D model �Eq.
�14�� and with the 3D model �Eq. �15�� leads to parameters
that are Q2D=1 and Q3D=2 �for comparison, the quality fac-
tor of a free spherical bubble of 25 �m radius is around 8
�Ref. 14�� with acoustic amplitudes EA

2D=0.43 J m−3 and
EA

3D=0.086 J m−3 if we assume the channel is located on an
antinode of the acoustic force �i.e., sin�2ky�=1�. These
acoustic amplitudes correspond to pressure amplitudes PA

2D

=0.62 bar and PA
3D=0.28 bar.

The overall agreement indicates that both models pro-
vide a good phenomenology of the acoustic forcing, the
bubbles being neither spherical nor cylindrical but in be-
tween, as sketched in Fig. 3. Whatever the exact shape is, the
sign of the force depends on the size: the bubbles with a
radius greater than the resonance radius Rr are attracted by
the nodes, as opposed to the smaller ones, which are attracted
to the antinodes. This is well expected by the model in Sec.
IV. The resonance radius �here 21 �m� gives a Minnaert
relation fRr=K, with a value of K=1.95 m s−1 that lies be-
tween the values for a “2D” pulsation �K�1.3 m s−1� and a
“3D” pulsation �K=3 m s−1�, as explained in Sec. IV.

V. APPLICATIONS OF ACOUSTIC MANIPULATION

A. An efficient size sorting device

The inserts in Fig. 7 already illustrate the possibility of
using the Bjerknes force to separate polydisperse bubbles
into two subcategories by an appropriate choice of the cen-
tral frequency, corresponding to a resonance size. Bubbles
whose radii are 20 and 22.5 �m are subjected to forces in
opposite directions, highlighting the strong size selectivity of
this method.

In practice, the situation is not so simple for an assembly
of bubbles. The first drawback is that the amplitude of the
force itself is size dependent. The amplitude of the force on
these bubbles, of 20 and 22.5 �m of radius, varies by a
factor of 3, leading to a distance of deviation of same ampli-
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tude three times longer. The second is that the bubbles may
also be coupled by multibubble effects �hydrodynamic cou-
pling, secondary acoustic forces�.

B. Programmable switching of bubbles

In order to prefigure bubble manipulation in a lab-on-
chip, we have tested the two elementary operations of bubble
detection and forcing. Bubbles are detected when they pass
through a laser beam, by means of an optical fiber coming
from above the setup. The signal, detected with a photodi-
ode, is acquired on a computer and analyzed on the fly. The
computer triggers a signal processing card in order to gener-
ate the appropriate acoustic signal.

Bubble switching by acoustic means was tested on a Y
junction geometry, as illustrated in Fig. 8. The switching is
activated by using the appropriate acoustic signal using two
different ultrasound frequencies of the same amplitude, and
therefore selecting two different positions for the nodes that
attract the bubbles, either to the right or to the left. The signal
consists of a sequence of three left-branch and three right-
branch instructions. These instructions comprise not only a
frequency but also a delay that corresponds to the time it
takes for each bubble to reach the bifurcation and an activa-
tion time that is set by the minimum time required for a
bubble to travel across the half width of the channel.

Figure 9�a� shows the histogram of time intervals be-
tween successive bubbles passing through the laser detection
beam. It can be seen that the periodicity of bubble generation
is widely distributed around T1=67 ms, ranging from 50 to
100 ms. This is characteristic of our flow focusing device
where the applied pressure gradient for air couples with the
pressure drop due to the bubbles already present in the cir-
cuit. The presence of peaks at T2�4T1 in Fig. 9 in each
branch is the signature of the efficient switching: they corre-
spond to the blank interval when bubbles are switched to the
other branch, see Fig. 9�b�. In this limit case of efficiency,

192 consecutive bubbles, separated by only two diameters,
have been correctly switched before one error occurred. The
efficiency collapses rapidly if the bubbles are closer. In this
case, this very good efficiency, up to approximately 17
bubbles per second, was reached by applying the acoustic
deviation to the bubbles with an activation time of 30 ms in
the experiment of Fig. 9, just enough to push the bubble in
the desired branch without disturbing the following one. This
system works endlessly as long as the bubbles do not get
closer than three diameters.

C. Controlled asymmetric bubble

We use a variant setup: it includes a global forcing be-
cause the PDMS is glued on a large glass slide that acts as a
resonator. It is used at a fixed frequency f =143 kHz, with a
varying ultrasound amplitude, measured by the voltage ap-
plied to the transducer. When we increase the voltage from 0
to 30 V, in a succession of 20 steps, the bubble breakup
becomes increasingly asymmetric, with the larger of the two
bubbles formed going into the left channel �see Fig. 10�. For
f =147 kHz, the result is similar, but the larger bubble goes
into the right branch. We thus easily produce populations of
bubbles with two different controlled sizes.

VI. CONCLUSIONS

The results show that the acoustic force applied at the
resonance of the bubbles can be very strong, large enough to
manipulate the bubbles in a microfluidic circuit. The model

(a)

(b)

FIG. 8. �Color online� �a� Scheme of the bubble switching experiment
showing the optical detection system and acoustic actuation. A 4.5 �m
monomode optical fiber is directly plugged into the microfluidic circuit.
Light scattered from bubbles is detected on a p-i-n photodiode. �b� Top view
of bubbles flowing in the microchannel with a Y junction. Bubbles are
emitted from the focusing device at the left side of the picture. The bubble
emission frequency is optically measured in the central C branch, their pass-
ing time in each branch is recorded at the white marks L and R.

(a)

(b)

FIG. 9. �Color online� �a� Histogram of the time intervals between two
successive bubbles, at different positions in the device shown in the previous
figure �labels L,C,R�. �b� Chronogram obtained by the horizontal juxtaposi-
tion of vertical lines of pixels �these pixel lines are L,C,R in the previous
figure� at different times. Here in reverse order to show the spatial ordering.
Because the bubble velocity Ux is constant, the plot is only a function of
u=x /Ux− t. The present temporal axis u�t�=x0 /Ux− t can thus be interpreted
as a spatial variable u�x�=x /Ux− t0.
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of the Bjerknes force has been extended to confined bubbles
with a modification of the Minnaert relation. Perspectives
include a better modeling of the bubble pulsation, taking into
account the real 3D shape of the confined bubbles, which
should provide a ground for the modified Minnaert law we
introduced. On the side of applications, these gas samples
provide a simple model system for the manipulation of soft
and compressible objects, such as gaseous contrast agents or
any gas filled biological material.
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FIG. 10. Controlled asymmetric bubble breakup by increasing the ultra-
sound amplitude by steps from 0 to 30 V. For increasing ultrasound ampli-
tude we encounter: �a� V=0 V, unperturbed flow, bubble breakup in two
equal parts, �b� intermediate V, asymmetric breakup, the largest part flows
into the left branch, �c� V=30 V, no breakup, bubbles are entirely deviated
on the left branch. The ultrasound frequency is set at f =143 kHz, flow
parameters: Ql=250 �l min−1, Pg=3.90 kPa.
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