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Microfluidic crystals are assemblies of miniature bubbles or drops flowing in channels. We explore here

the flow of these crystals, when submitted to a given driving pressure. The flow velocity is linked to the

finite number of elements in the channel width, and presents discontinuities when the crystal structure

changes. At the transition from one structure to the other original dynamic features appear. The flow can

self-regulate itself on a fixed velocity whatever the driving pressure, or, on the contrary, can spontaneously

pulsate. All these features are predicted by simply considering the crystal’s energy and friction, and

looking at the propagation of structure rearrangements. We anticipate these results to improve the control

over the structure of dense two-phase flows in microfluidic systems.
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Recently, several microfluidic methods have been devel-
oped to generate miniature bubbles or droplets. These
methods are usually based on channels, micrometric in
size, with specific geometries to assemble two fluid phases
[1–3]. At small scales flows are laminar, and induce ex-
tremely well controlled bubble or droplet sizes [2]: stan-
dard deviation in size can be as little as 0.1% [4].

Since bubbles or droplets have identical sizes, they
spontaneously self-assemble in ordered lattices that are
called microfluidic crystals [5–11]. A surfactant solution
prevents coalescence. By including a hardening step these
assemblies could become the basis of new solid metama-
terials [6,12], with applications in acoustics as phononic
crystals, photonics, filtration, and other technologies need-
ing a precisely ordered material. Furthermore, creating
foams and emulsions is of interest within a lab-on-a-chip.
Indeed bubbles, and similarly droplets, can be seen as
volume samples, typically of one picoliter [13], that are
manipulated and analyzed within a miniature lab [14].

Microfluidic crystals are highly confined in channels,
whose size is comparable to the element size. Their dis-
crete (noncontinuous) composition in individual elements
leads to original features. For this field, integrating foams
in microfluidics, the term ‘‘discrete microfluidics’’ was
recently suggested [15].

Here we show that their flow presents rich nonlinear
dynamics, because of their discrete composition. Indeed
their rate of flow is far from being proportional (linear) to
the driving pressure. Because of changes in the crystalline
pattern, the flow can (i) self-regulate and lock to a fixed
velocity, whatever the pressure, or on the reverse
(ii) periodically pulsate at a given pressure. Wewill present
experiments describing the first case. We will provide key
elements to the understanding of this dynamics, namely,
the drag of different crystalline patterns, and the presence
of pattern rearrangements that can propagate. These new
elements will also help with the understanding of the
second case, with oscillations observed experimentally
[9,16], but whose conditions of apparition were unclear.

To investigate the flow of these microfluidic crystals, we
built a microfluidic bubble generator. The device we use
for microbubble generation and observation is based on a
flow-focusing geometry [1,2], and consists in a planar
network of h ¼ 100 �m height rectangular ducts pro-
duced by soft-lithography [17]. Bubble production
[2,4,11] is controlled by two parameters: the gas pressure
Pg that inflates bubbles and thereby pushes the structure in

the channels, and the liquid flow rate Ql that segments the
gas jet and creates soapy liquid films between and around
bubbles [see Fig. 1(a)].
Various crystalline patterns appear when tuning up the

gas pressure: bubble volume Vb increases [2], and the flow
transits from bubbly to a foam flow, with a structure that
contains fewer and fewer bubble rows [11] in a channel.
Simple foam hexagonal structures are characterized by the
number of bubble rows in the channel width: hex-one, hex-
two, hex-three, and so on [9]. From now on, we will focus
on hex-one and hex-two structures that are easily de-
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FIG. 1. Microfluidic crystals bubbles are generated one by one
in the inlet of the microchannel, injecting simultaneously gas
with a driving pressure Pg, and liquid of flow rate Ql. (a) At

small bubble sizes, we obtain a bubbly flow. (b)–(e) By increas-
ing gradually the gas pressure from 1 to 10 kPa (with a liquid
flow rate of the order of a few �l=min ) the bubble size grows
and flowing microfluidic crystals self-assemble. The number or
rows in the width (w ¼ 1 mm) decreases by steps. The hexago-
nal structure is named according to the number of rows: hex-four
(b), hex-three (c), hex-two (d), hex-one (e).
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scribed, but the present results can be extrapolated to
higher number crystals [18]. In Fig. 2(a), we plot the
flow velocity versus the imposed gas pressure, for a narrow
channel. At low pressures small bubbles self-assemble in
the hex-two structure, while at high pressures larger bub-
bles organize in hex-one structure.

In between these homogeneous structures, transition
regions exist that present original features. We will see
three different kinds of transitions depending on Ql: we
start here with the one observed at medium Ql, because it
will shed light on all the others. We observe a remarkable
behavior in this transition region: the flow velocity plateaus
at a constant value for a large range of driving pressure.
Since the flow rate is stable in time and against pressure
variation we obtain a self-regulated flow. As a side effect,
the bubble volume also stays constant, because it is pro-
portional to the velocity [11]. The hex-one structure
changes continuously in a hex-two structure at a front
whose position is stationary, see movie 1 in Ref. [19].
This position depends only on the gas pressure: it is located
further downstream at higher Pg, increasing the hex-one

proportion. The analogy with a first order phase transition
is striking. A liquid-vapor isotherm presents a similar
plateau in the pressure vs density diagram, and hysteresis
at transitions.

The structure transformation involves topological rear-
rangements known as T1 changes. These events corre-
spond to an exchange in neighbor [Figs. 3(a)–3(g)] that
decreases the energy associated with the liquid-gas inter-
faces [20]. We will call the sequence of T1 events at the
interface between structures a ‘‘T1 wave.’’ Actually, in the
reference frame of the foam, this T1 wave propagates
upstream. Further on we will show that the equilibration
of the foam velocity vfoam to the upstream T1-wave veloc-
ity vT1 sets the position of the front. The plateau value in
velocity has therefore the value vfoam ¼ �vT1.
Studying T1 events in foams is currently a lively re-

search topic, as they are the basic element of plasticity in
amorphous materials [7,21–23]. A recent publication of
Durand et al. [24] showed that the typical relaxation
time after a T1 event is related to the viscoelastic proper-
ties of the gas-liquid interface, notably the surface shear
plus elongational viscosity �s þ � and the Gibbs elas-
ticity �. Their analysis gives a characteristic time:
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FIG. 2 (color online). Transition from one flowing crystal to
the other, with a steady coexistence because of a stationary
rearrangement wave. (a) Flow velocity as a function of the
applied gas pressure Pg (at Ql ¼ 5 �l=min ). For increasing

Pg the structure is the following: hex-two (image insert), then a

coexistence of hex-one and hex-two [labels (b)–(e) indicate the
image below], then hex-one (image insert). Continuous arrows
indicate the path for growing Pg, dashed arrows for decreasing

Pg. (b)–(e) The plateau in velocity corresponds to a self-

regulated situation where a structure transforms continuously
into the other at a stationary front indicated by a vertical bar.
Snapshots are taken for pressure Pg 3.46 kPa (b), 3.75 kPa (c),

4.09 kPa (d), 4.73 kPa (e); see movie 1 in Ref. [19].
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FIG. 3 (color online). Time-resolved dynamics of rearrange-
ments at the front between structures. (a) Schematic representa-
tion of a T1 rearrangement (neighbor swapping) next to the
upper wall. (b)–(g) Time series at the interface between the two
structures [close-up of Fig. 2(b)]. The junction between these
structures leads to a mismatch with a deformed bubble (indicated
in white), which triggers a T1 next to the upper wall. (e)–(f) The
next bubble (in black) is now deformed and will on its turn
experience a T1 next to the lower wall. (h) Drawing containing
the perimeter L, proportional to bubble energy, and friction
length Lfric. (i) Predicted energy L and friction Lfric as a function
of bubble volume for the two structures (thick: hex-one, thin:
hex-two). Lines: stable state; dashes: unstable state; triangles:
experimental limits of stability. Sketches illustrate the stability
with an energy potential, the thick ‘‘wheel’’ stands for the hex-
one state while the thin ‘‘wheel’’ stands for the hex-two state.
Coexistence of the two structures is possible only in the region
between the vertical dotted lines, hex-one being metastable and
hex-two stable.
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�T1 ¼ ð�s þ �Þ=� � 30 ms for a solution of SDS, a typi-
cal surfactant. We predict the typical speed to be

vT1 ¼ �x

�T1
; (1)

with�x ¼ Vb=hw the distance between two bubbles in the
hex-one structure. It gives a value of 12 mm=s which is the
same order of magnitude as the measured speed vfoam ¼
7 mm=s, seeming to confirm that surface viscosity is the
main dissipation mechanism. An alternative model where
T1 speed is related to friction on the wall would give a
much smaller and unrealistic relaxation time.

A drop in interfacial energy is a necessary, but not
sufficient, condition for a topological rearrangement to
occur. The energy for one bubble is just the surface tension
� times the total bubble surface (gas-liquid interface). Here
we consider bubbles of constant volume, and the only
variable part of energy is E ¼ �hL, with L the perimeter
seen on images. Thus it is convenient and graphical to
simply compare the apparent bubble perimeter L for the
hex-one and hex-two structure [Fig. 3(h)]. It can be calcu-
lated analytically (see also [25]), assuming perfectly dry
foams in local equilibrium, for the two different structures:

Lhex-one ¼ ð1þ 2Vb=hw
2Þw, Lhex-two ¼ ½1=2þ ð2þ

ffiffiffi

3
p

=2ÞVb=hw
2�w. As can be seen in Fig. 3(i), these equa-

tions imply a crossover in energy at Vc=hw
2 ¼ ffiffiffi

3
p

=3 ’
0:58, for which Lhex-one ¼ Lhex-two.

For the foam undergoing a T1 wave, the hex-two struc-
ture has the lowest energy (the bubble volume Vb=hw

2 ¼
0:36 is lower than Vc). The hex-two structure is said to be a
stable state while the hex-one structure is a metastable
state. By shape deformations a bubble can explore the
energy landscape. Each structure is (linearly) stable against
small amplitude deformations, being at the local minimum
of an energy potential, see the sketch in the middle of
Fig. 3(i). The T1 wave causes a large deformation of the
bubble shape and is therefore the large amplitude (non-
linear) route to pass the energy barrier between the meta-
stable state and the stable state [26].

This coexistence of structure is in fact limited to an
intermediate range of bubble volumes. Indeed, if the bub-
ble volume is too low (for hex-one) or too large (for hex-
two) one structure becomes linearly unstable just after
formation. These critical volumes, measured on experi-
ments, are indicated on Fig. 3(i) by two vertical lines,
and define the extent of the coexistence zone.

We now expose simple arguments based on the different
friction of structures, to explain the self-regulating mecha-
nism of the front. The structure present in the channel
influences the total flow resistance R, a quantity that relates
the velocity to the imposed pressure:

Pg ¼ Rv�
foam; (2)

with � a coefficient in between 1=2 and 2=3 [27–31]. With
a coexistence of structures the resistance writes

R��nRhex-one
friction þ ð1��ÞnRhex-two

friction ; (3)

where we have introduced n the total number of bubbles,
� ¼ nhex-one=n the proportion of hex-one bubbles, and
Rfriction the friction per bubble. Cantat et al. demonstrated
a geometrical relation between Rfriction and the foam struc-
ture [28]: Rfriction / Lfriction, with Lfriction the projection of L
in the direction normal to the flow [Fig. 3(i)]. It results
from the local friction due to motion of the liquid that is
largely confined to the menisci in between bubbles and the
channel walls. This friction contact area corresponds ap-
proximately to the black part on the images. Since the
channel is very thin, dissipative friction occurs mainly on
the (transparent) walls that are in front of and behind
the bubbles, along the axis of view. The calculation of
Lfriction gives [32]: Lhex-one

friction ¼ 2w and Lhex-two
friction ¼ ½1þ

ð1= ffiffiffi

3
p ÞVb=hw

2�w. The hex-one bubbles always have a
higher resistance to flow than the hex-two bubbles; see
Figs. 3(h) and 3(i): their transverse span is larger. A similar
result can be obtained for higher order crystals (hex-two
compared with hex-three, and so on), with less pronounced
effects [18] because of smaller friction differences.
The difference in the friction of structures provides a

feedback to regulate the position of the front. For instance,
a slight displacement of the front downstream will increase
� and the total drag by Eq. (3), thereby slowing down the
foam. This will redirect the interface towards its initial
position. The fraction � of hex-one bubbles, and thus the
equilibrium position of the front, is given by Eq. (2) and (3)
using vfoam ¼ �vT1. A change in Pg is compensated by a

resistance change and by a linear variation of the front
position along the channel.
There are two other original flows intermediate between

hex-one and hex-two structures, that appear when tuning
the second control parameter, the liquid flow rate. The self-
regulated regime ranges in an intermediate domain (see
phase diagram in [19]). For higher liquid flow rates, the
flow is unstable, with transient appearances of the hex-two
structure that are advected out of the channel. For lower
liquid flow rates, the flow spontaneously pulsates, oscillat-
ing periodically between the production of each structure
[32].
These regimes have the same bubble volumes but cor-

respond to different foam flow speeds. Indeed when Ql is
increased, it is necessary to tune up simultaneously Pg to

maintain the same bubble volume [2,11], which leads to an
increase of the gas flow and foam speed vfoam.
We can now propose a general classification of the

transition regimes, from the comparison of the foam speed
with the T1-wave velocity, using the language of large
amplitude nonlinear instabilities (see Fig. 4):
(a) The structure coexistence for which vfoam ¼ �vT1

corresponds to a stationary instability of the hex-one–
hex-two interface.
(b) The large flow velocity case with vfoam >�vT1 can

be described as an advected instability.
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(c) The low velocity case with vfoam <�vT1 leading to a
periodically oscillating flow [32], is now interpreted as an
absolute instability. Rapidly after its nucleation, a T1 wave
reaches the orifice thereby leading to hex-two formation at
the orifice, until bubble volumes are too large, which
triggers the periodic oscillation.

The first stationary case is marginal for systems with an
imposed flow rate [33]. Here the pressure is imposed, and
the self-adaptation of the flow rate remarkably produces a
stationary domain with a finite extent.

The dynamic interplay between structure and flow is
therefore ruled by the velocity of propagation of structure
rearrangements. The complex flow that we describe here is
an interesting example of dynamic self-organization, that
is rich in behavior and can be understood with simple
physical arguments. On the technological level, it opens
new possibilities for the generation of controlled bubble or
droplet samples. The oscillating regime offers a route to the
production of bubble samples with a known polydispersity.
The locking of the bubble size to a particular value in the
structure coexistence domain permits very robust bubble
generation. Small fluctuations in the inlet pressure do not
lead to a variation in bubble size but are absorbed by a
small shift in the hex-one–hex-two interface position. In its
turn, the avalanche of T1 changes at this interface allows
for a, to our best knowledge, uniquely easy way to study
this key element in amorphous material science: the T1
changes are stationary in space and their number is in
principle unlimited in time.
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(a)  Stationary: self-regulated flow

(c)  Absolute: periodic oscillations

(b)  Convected: unstable flow

FIG. 4. Ordering of the complex flow structures. Arrows in-
dicate the absolute velocity of the rearrangement front. See [19]
for movies. (a) Ql¼5�l=min , Pg¼3:8 kPa; (b) Ql ¼
10 �l=min , Pg ¼ 9:3 kPa; (c) Ql ¼ 4 �l=min , Pg ¼ 2:9 kPa.
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