Karin John

Biophysics and Physics of Soft Active Matter

Theory and Mechanistic Modeling

Publications

  1. L. Riglet, C. Quilliet, C. Godin, K. John, and I. Fobis-Loisy (2024) Geometry and cell wall mechanics guide early pollen tube growth in Arabidopsis thaliana. bioRxiv
  2. W. Lecompte, and K. John (2023) Molecular motors enhance microtubule lattice plasticity. PRX Life 1: 013012 doi:10.1103/PRXLife.1.013012
  3. S. Gomez Ho, L. Bureau, K. John, D. Débarre and S. Lecuyer (2023) Substrate stiffness impacts early biofilm formation by modulating Pseudomonas aeruginosa twitching motility. ELife 12: e81112 doi:10.7554/eLife.81112
  4. F. Stegemerten, K. John, U. Thiele. (2022) Symmetry-breaking, motion and bistability of active drops through polarization-surface coupling. Soft Matter 18: 5823. doi:10.1039/D2SM00648K
  5. S. Triclin, D. Inoue, J. Gaillard, Z.M. Htet, M.E. DeSantis, D. Portran, E. Derivery, C. Aumeier, L. Schaedel, K. John, C. Leterrier, S. L. Reck-Peterson, L. Blanchoin, M. Théry. (2021) Self-repair protects microtubules from destruction by molecular motors. Nat. Mater. 20: 883. doi:10.1038/s41563-020-00905-0
  6. S. Trinschek, F. Stegemerten, K. John and U. Thiele. (2020) Thin-film modeling of resting and moving active droplets. Phys. Rev. E 101: 062802. doi:10.1103/PhysRevE.101.062802
  7. A. Aher, D. Rai, L. Schaedel, J. Gaillard, K. John, Q. Liu, M. Altelaar, L. Blanchoin, M. Thery and A. Akhmanova. (2020) CLASP mediates microtubule repair by restricting lattice damage and regulating tubulin incorporation. Curr. Biology 30: 2175. doi:10.1016/j.cub.2020.03.070
  8. L. Schaedel, S. Triclin, D. Chrétien, A. Abrieu, C. Aumeier, J. Gaillard, L. Blanchoin, M. Théry and K.John. (2019) Lattice defects induce microtubule self-renewal. Nature Physics 15: 830. doi:10.1038/s41567-019-0542-4
  9. U. Thiele, J.H. Snoeijer, S. Trinschek and K. John (2018) Equilibrium contact angle and adsorption layer properties with surfactants. Langmuir 34: 7210. doi:10.1021/acs.langmuir.8b00513
  10. S. Trinschek, K. John, and U. Thiele (2018) Modelling of surfactant-driven front instabilities in spreading bacterial colonies. Soft Matter 14: 4464. doi:10.1039/C8SM00422F
  11. S. Trinschek, K. John, S. Lecuyer and U. Thiele (2017) Continuous vs. arrested spreading of biofilms at solid-gas interfaces - The role of surface forces. Phys. Rev. Lett. 119: 078003. doi:10.1103/PhysRevLett.119.078003
  12. K. John, T. Stöter, C. Misbah (2016) A variational approach to the growth dynamics of pre-stressed actin filament networks. J. Phys. Cond. Mat. 28: 375101. doi:10.1088/0953-8984/28/37/375101
  13. C. Aumeier, L. Schaedel, J. Gaillard, K. John, L. Blanchoin and M. Théry (2016) Self-repair promotes microtubule rescue. Nat. Cell Biol. 18, 1354-1364. doi:10.1038/ncb3406
  14. S. Trinschek, K. John and U. Thiele (2016) From a thin film model for passive suspensions towards the description of osmotic biofilm spreading. AIMS Mat. Sci. 3, 1138-1159. doi:10.3934/matersci.2016.3.1138
  15. L. Schaedel, K. John, J. Gaillard, M. Nachury, L. Blanchoin and M. Théry (2015) Microtubules self-repair in response to mechanical stress. Nat. Mater. 14, 1156-1163. doi:10.1038/nmat4396
  16. K. John, S. Alonso and M. Bär (2014) Traveling waves and global oscillations triggered by attractive molecular interactions in an excitable system. Phys. Rev. E 90, 052913. doi:10.1103/PhysRevE.90.052913
  17. K. John, D. Caillerie and C. Misbah (2014) Spontaneous polarization in an interfacial growth model for actin filament networks with a rigorous mechano-chemical coupling. Phys. Rev. E 90, 052706. doi:10.1103/PhysRevE.90.052706
  18. K. John, D. Caillerie, P. Peyla, A. Raoult and C. Misbah (2013) Nonlinear elasticity of cross-linked networks. Phys. Rev. E 87, 042721. doi:10.1103/PhysRevE.87.042721
  19. K. John and U. Thiele (2013) Kletternde Tropfen. Physik Journal 12, 33. web-link
  20. S. Alonso, K. John and M. Bär (2011). Complex wave patterns in an effective reaction-diffusion model for chemical reactions in microemulsions. J. Chem. Phys. 134, 094117. doi:10.1063/1.3559154
  21. K. John and U. Thiele (2010) Self-ratcheting Stokes drops driven by oblique vibrations. Phys. Rev. Lett. 104, 107801. doi:10.1103/PhysRevLett.104.107801
  22. U. Thiele and K. John (2010) Transport of free surface liquid films and drops by external ratchets and self-ratcheting mechanisms. Chem. Phys. 375, 578-586. doi:10.1063/1.5010262
  23. K. John, D. Caillerie, P. Peyla, M. Ismail, A. Raoult, J. Prost and C. Misbah (2010) Cell mechanics. From single scale-based models to multiscale modeling. CRC Press, Chapman & Hall, Chap. Actin based propulsion: Intriguing interplay between material properties and growth processes, 29-65.
  24. John, K., Peyla, P., Kassner, K., Prost, J. and Misbah, C. (2008). A nonlinear study of symmetry-breaking in actin gels: Implications for cellular motility. Phys. Rev. Lett. 100, 068101. doi:10.1103/PhysRevLett.100.068101
  25. K. John, P. Hänggi and U. Thiele (2008). Ratchet-induced fluid transport in bounded two-layer films of immiscible liquids. Soft Matter 4, 1183-1195. doi:10.1039/B718850A
  26. K. John and U. Thiele (2007). Liquid transport generated by a flashing field-induced wettability ratchet. Appl. Phys. Lett. 90, 264102. doi:10.1063/1.2751582
  27. K. John, M. Bär and U. Thiele (2005). Self-propelled running droplets on solid substrates driven by chemical reactions. Eur. Phys. J. E 18, 183-199. doi:10.1140/epje/i2005-10039-1
  28. K. John and M. Bär (2005). Alternative mechanisms of structuring biomembranes: self-assembly versus self-organization. Phys. Rev. Lett. 95, 198101. doi:10.1103/PhysRevLett.95.198101
  29. K. John and M. Bär (2005). Travelling lipid domains in a dynamic model for protein-induced pattern formation in biomembranes. Phys. Biol. 2, 123-132. doi:10.1088/1478-3975/2/2/005
  30. U. Thiele, K. John and M. Bär (2004). Dynamical model for chemically driven running droplets. Phys. Rev. Lett. 93, 027802. doi:10.1103/PhysRevLett.93.027802
  31. K. John, S. Schreiber, A. Herrmann and P. Müller (2002). Transbilayer movement of phospholipids at the main phase transition of lipid membranes: Implications for rapid flip-flop in biological membranes. Biophys. J. 83, 3315–3323. doi:10.1016/S0006-3495(02)75332-0
  32. K. John, J. Kubelt, P. Müller,D. Wüstner and A. Herrmann (2002). Rapid transbilayer movement of the fluorescent sterol dehydroergosterol in lipid membranes. Biophys. J. 83, 1525–1534. doi:10.1016/S0006-3495(02)73922-2
  33. K. John and A.I. Barakat (2001) Modulation of ATP/ADP concentration at the endothelial surface by shear stress: effect of flow induced ATP release. Ann. Biomed. Eng. 29: 740-751. doi:10.1114/1.1397792