Eric Bertin


Coordinates

Eric

Dr. Eric Bertin
Laboratoire Interdisciplinaire de Physique (LIPhy)
Université Grenoble Alpes
Pôle Phitem
CS 40 700
38058 Grenoble cedex 9, France (postal address)


Phone: +33 476 51 47 51
Fax: +33 476 51 45 44
E-mail: eric.bertin_(at)_univ-grenoble-alpes.fr

 

Selected topics and papers (Link to full publication list)



STATISTICAL PHYSICS OF ACTIVE MATTER AND LOCALLY DRIVEN SYSTEMS


Spontaneous oscillations in systems with non-reciprocal interactions

Hidden collective oscillations in a disordered mean-field spin model with non-reciprocal interactions
L. Guislain, E. Bertin, J. Phys. A: Math. Theor. 57, 375001 (2024) [arXiv:2406.03874].

Collective oscillations in a three-dimensional spin model with non-reciprocal interactions
L. Guislain, E. Bertin, J. Stat. Mech. 093210 (2024) [arXiv:2405.13925].

Far-from-equilibrium complex landscapes
L. Guislain, E. Bertin, submitted (2024) [arXiv:2405.08452].

Tailoring the overlap distribution in driven mean-field spin models
L. Guislain, E. Bertin, Phys. Rev. B 109, 184203 (2024) [arXiv:2312.07453].

Discontinuous phase transition from ferromagnetic to oscillating states in a nonequilibrium mean-field spin model
L. Guislain, E. Bertin, Phys. Rev. E 109, 034131 (2024) [arXiv:2310.13488].

Nonequilibrium phase transition to temporal oscillations in mean-field spin models
L. Guislain, E. Bertin, Phys. Rev. Lett. 130, 207102 (2023) [arXiv:2211.08009].


Collective order in systems of active particles

Biased motility-induced phase separation: from chemotaxis to traffic jams
E. Bertin, A. Solon, J. Stat. Mech. 053201 (2024) [arXiv:2312.13963].

Understanding dense active nematics from microscopic models
A. Patelli, I. Djafer-Cherif, I.S. Aranson, E. Bertin, H. Chaté, Phys. Rev. Lett. 123, 258001 (2019) [arXiv:1904.12708].

Self-propelled particles with velocity reversals and ferromagnetic alignment: Active matter class with second-order transition to quasi-long-range polar order
B. Mahault, X.-c. Jiang, E. Bertin, Y.-q. Ma, A. Patelli, X.-q. Shi, H. Chaté, Phys. Rev. Lett. 120, 258002 (2018) [arXiv:1803.00104].

Comparison between Smoluchowski and Boltzmann approaches for self-propelled rods
E. Bertin, A. Baskaran, H. Chaté, M.C. Marchetti, Phys. Rev. E 92, 042141 (2015) [arXiv:1507.07812].

Boltzmann-Ginzburg-Landau approach for continuous descriptions of generic Vicsek-like models
A. Peshkov, E. Bertin, F. Ginelli, H. Chaté, Eur. Phys. J Special Topics 223, 1315 (2014) [arXiv:1404.3275].

Large-scale chaos and fluctuations in active nematics
S. Ngo, A. Peshkov, I.S. Aranson, E. Bertin, F. Ginelli, H. Chaté, Phys. Rev. Lett. 113, 038302 (2014) [arXiv:1312.1076].

Mesoscopic theory for fluctuating active nematics
E. Bertin, H. Chaté, F. Ginelli, S. Mishra, A. Peshkov, S. Ramaswamy, New J. Phys. 15, 085032 (2013) [arXiv:1305.0772].

Nonlinear field equations for aligning self-propelled rods
A. Peshkov, I. S. Aranson, E. Bertin, H. Chaté, F. Ginelli, Phys. Rev. Lett. 109, 268701 (2012) [arXiv:1207.5751].

Continuous theory of active matter systems with metric-free interactions
A. Peshkov, S. Ngo, E. Bertin, H. Chaté, F. Ginelli, Phys. Rev. Lett. 109, 098101 (2012) [arXiv:1203.6853].

Hydrodynamic equations for self-propelled particles: microscopic derivation and stability analysis
E. Bertin, M. Droz, G. Grégoire, J. Phys. A: Math. Theor. 42, 445001 (2009) [arXiv:0907.4688].

Boltzmann and hydrodynamic description for self-propelled particles
E. Bertin, M. Droz, G. Grégoire, Phys. Rev. E 74, 022101 (2006) [cond-mat/0601038].


Dense active matter and modeling of biological tissues

Dense active matter model of motion patterns in confluent cell monolayers
S. Henkes, K. Kostanjevec, J.M. Collinson, R. Sknepnek, E. Bertin, Nat. Comm. 11, 1405 (2020) [arXiv:1901.04763].

Non-linear rheology in a model biological tissue
D. A. Matoz-Fernandez, E. Agoritsas, J.-L. Barrat, E. Bertin, K. Martens, Phys. Rev. Lett. 118, 158105 (2017) [arXiv:1611.05282].


Modeling of experimental swimmers

Behavioral transition of a fish school in a crowded environment
B. Ventéjou, I. Magniez-Papillon, E. Bertin, P. Peyla, A. Dupont, Phys. Rev. E 109, 064403 (2024) [arXiv:2402.03123].

Deflection of phototactic microswimmers through obstacle arrays
M. Brun-Cosme-Bruny, A. Förtsch, W. Zimmermann, E. Bertin, P. Peyla, S. Rafaď, Phys. Rev. Fluids 5, 093302 (2020) [arXiv:2005.05677].

Effective diffusivity of microswimmers in a crowded environment
M. Brun-Cosme-Bruny, E. Bertin, B. Coasne, P. Peyla, S. Rafaď, J. Chem. Phys. 150, 104901 (2019) [arXiv:1811.08108].

Photofocusing: Light and flow of phototactic microswimmer suspension
M. Martin, A. Barzyk, E. Bertin, P. Peyla, S. Rafai, Phys. Rev. E 93, 051101(R) (2016) [arXiv:1603.00761].



STATISTICAL PHYSICS OF SOFT MATTER AND EXTERNALLY DRIVEN ATHERMAL SYSTEMS


Flow of complex fluids

Microscopically grounded constitutive model for dense suspensions of soft particles below jamming
N. Cuny, E. Bertin, R. Mari, Phys. Rev. Fluids 8, 053302 (2023) [arXiv:2301.11234].

Dynamics of microstructure anisotropy and rheology of soft jammed suspensions
N. Cuny, E. Bertin, R. Mari, Soft Matter 18, 328 (2022) [arXiv:2109.07786].

Derivation of a constitutive model for the rheology of jammed soft suspensions from particle dynamics
N. Cuny, R. Mari, E. Bertin, J. Stat. Mech. 033206 (2022) [arXiv:2102.05524].

Microscopic theory for the rheology of jammed soft suspensions
N. Cuny, R. Mari, E. Bertin, Phys. Rev. Lett. 127, 218003 (2021) [arXiv:2102.05938].

Giant fluctuations in the flow of fluidised soft glassy materials: an elasto-plastic modelling approach
M. Le Goff, E. Bertin, K. Martens, J. Phys.: Mater. 3, 025010 (2020) [arXiv:1911.01259].

On the relevance of disorder in athermal amorphous materials under shear
E. Agoritsas, E. Bertin, K. Martens, J.-L. Barrat, Eur. Phys. J. E 38, 71 (2015) [arXiv:1501.0451].

Intermittent outgassing through a non-newtonian fluid
T. Divoux, E. Bertin, V. Vidal, J.-C. Géminard, Phys. Rev. E 79, 056204 (2009) [arXiv:0810.3095].


Critical phenomena in driven athermal systems

Giant density fluctuations in locally hyperuniform states
S. Dal Cengio, R. Mari, E. Bertin, submitted (2024) [arXiv:2410.18741].

Protocol dependence for avalanches under constant stress in elastoplastic models
T. Jocteur, E. Bertin, R. Mari, K. Martens, to appear in Phys. Rev. E (2025) [arXiv:2409.05444].

Yielding is an absorbing phase transition with vanishing critical fluctuations
T. Jocteur, S. Figueiredo, K. Martens, E. Bertin, R. Mari, Phys. Rev. Lett. 132, 268203 (2024) [arXiv:2401.11797].

Absorbing phase transitions in systems with mediated interactions
R. Mari, E. Bertin, C. Nardini, Phys. Rev. E 105, L032602 (2022) [arXiv:2105.15027].

Criticality at a finite strain rate in fluidized soft glassy materials
M. Le Goff, E. Bertin, K. Martens, Phys. Rev. Lett. 123, 108003 (2019) [arXiv:1904.01304].

Generalized Edwards thermodynamics and marginal stability in a driven system with dry and viscous friction
G. Gradenigo, E. Bertin, Phys. Rev. E 95, 030106(R) (2017) [arXiv:1701.01071].

Edwards thermodynamics for a driven athermal system with dry friction
G. Gradenigo, E.E. Ferrero, E. Bertin, J.-L. Barrat, Phys. Rev. Lett. 115, 140601 (2015) [arXiv:1507.05898].


Turbulence, non-Gaussian fluctuations and on-off intermittency

A cascade model for the discontinuous absorbing phase transition between turbulent and laminar flows
E. Bertin, A. Andrix, G. Le Godais, J. Stat. Phys. 191, 113 (2024) [arXiv:2406.11324].

Dissipation induced non-Gaussian energy fluctuations
E. Bertin, P.C.W. Holdsworth, EPL 102, 50004 (2013) [arXiv:1303.4689].

Turbulence lifetimes: what we can learn from the physics of glasses
O. Dauchot, E. Bertin, Phys. Rev. E 86, 036312 (2012) [arXiv:1202.5635].

On-off intermittency over an extended range of control parameter
E. Bertin, Phys. Rev. E 85, 042104 (2012) [arXiv:1112.0189].

Far-from-equilibrium state in a weakly dissipative model
E. Bertin, O. Dauchot, Phys. Rev. Lett. 102, 160601 (2009) [arXiv:0812.3304].



STATISTICAL PHYSICS OF GLASSES


Glass transition, dynamical heterogeneities and characteristic lengths

Rényi complexity in mean-field disordered systems
N. Javerzat, E. Bertin, M. Ozawa, submitted (2024) [arXiv:2411.19817].

Nonlinear dielectric response in glasses: restoring forces and avoided spin-glass criticality
E. Bertin, F. Ladieu, Phys. Rev. E 109, 064156 (2024) [arXiv:2312.04267].

Field-induced superdiffusion and dynamical heterogeneity
G. Gradenigo, E. Bertin, G. Biroli, Phys. Rev. E 93, 060105(R) (2016) [arXiv:1604.02837].

On the existence of a glass transition in a Random Energy Model
F. Angeletti, E. Bertin, P. Abry, J. Phys. A: Math. Theor. 46, 315002 (2013) [arXiv:1303.5555].

Subdiffusion and dynamical heterogeneities in a lattice glass model
E. Bertin, J.-P. Bouchaud, F. Lequeux, Phys. Rev. Lett. 95, 015702 (2005) [cond-mat/0501192].

Real space analysis of inherent structures
E. Bertin, Europhys. Lett. 71, 452 (2005) [cond-mat/0410537].


Relaxation in glasses, aging and anomalous diffusion

Aging in the trap model as a relaxation further away from equilibrium
E. Bertin, J. Phys. A: Math. Theor. 46, 095004 (2013) [arXiv:1210.4780].

Entropic aging and extreme value statistics
E. Bertin, J. Phys. A: Math. Theor. 43, 345002 (2010) [arXiv:1004.1597].

From laser cooling to aging: a unified Lévy flight description
E. Bertin, F. Bardou, Am. J. Phys. 76, 630 (2008) [cond-mat/0503150].

The Kovacs effect in model glasses
E. Bertin, J.-P. Bouchaud, J.-M. Drouffe, C. Godrèche, J. Phys. A: Math. Gen. 36, 10701 (2003) [cond-mat/0306089].

Cross-over from entropic to thermal dynamics in glassy models
E. Bertin, J. Phys. A: Math. Gen. 36, 10683 (2003) [cond-mat/0305538].

Linear and nonlinear response in the aging regime of the one dimensional trap model
E. Bertin, J.-P. Bouchaud, Phys. Rev. E 67, 065105(R) (2003) [cond-mat/0303582].

Subdiffusion and localization in the one dimensional trap model
E. Bertin, J.-P. Bouchaud, Phys. Rev. E 67, 026128 (2003) [cond-mat/0210521].

Dynamical ultrametricity in the critical trap model
E. Bertin, J.-P. Bouchaud, J. Phys. A: Math. Gen. 35, 3039 (2002) [cond-mat/0112187].



STATISTICAL DESCRIPTION OF NONEQUILIBRIUM STEADY STATES


Driven stochastic lattice models with exactly solvable steady-state distributions

Matrix Product representation of the stationary state of the open Zero Range Process
E. Bertin, M. Vanicat, J. Phys. A 51, 245001 (2018) [arXiv:1803.08275].

A mass transport model with a simple non-factorized steady-state distribution
J. Guioth, E. Bertin, J. Stat. Mech. 063201 (2017) [arXiv:1702.05765].

An exactly solvable dissipative transport model
E. Bertin, J. Phys. A: Math. Gen. 39, 1539 (2006) [cond-mat/0509723].


Large deviations of current and activity in driven systems

Mapping current and activity fluctuations in exclusion processes: consequences and open questions
M. Vanicat, E. Bertin, V. Lecomte, E. Ragoucy, SciPost Phys. 10, 028 (2021) [arXiv:2011.02202].

Current statistics and depinning transition for a one-dimensional Langevin process in the weak-noise limit
N. Tizón-Escamilla, V. Lecomte, E. Bertin, J. Stat. Mech. 093208 (2020) [arXiv:2006.03539].

Effective driven dynamics for one-dimensional conditioned Langevin processes in the weak-noise limit
N. Tizón-Escamilla, V. Lecomte, E. Bertin, J. Stat. Mech. 013201 (2019) [arXiv:1807.06438].


Conservation law and non-equilibrium chemical potential

Nonequilibrium grand-canonical ensemble built from a physical particle reservoir
J. Guioth, E. Bertin, Phys. Rev. E 103, 022107 (2021) [arXiv:2007.10855].

Non-additive large deviation function for the particle densities of driven systems in contact
J. Guioth, E. Bertin, J. Stat. Mech. 063209 (2020) [arXiv:1912.00529].

Nonequilibrium chemical potentials of steady-state lattice gas models in contact: a large deviation approach
J. Guioth, E. Bertin, Phys. Rev. E 100, 052125 (2019) [arXiv:1909.00432].

Lack of an equation of state for the nonequilibrium chemical potential of gases of active particles in contact
J. Guioth, E. Bertin, J. Chem. Phys. 150, 094108 (2019) [arXiv:1812.05963].

Large deviations and chemical potential in bulk-driven systems in contact
J. Guioth, E. Bertin, EPL 123, 10002 (2018) [arXiv:1801.07483].

Influence of flux balance on the generalized chemical potential in mass transport models
K. Martens, E. Bertin, J. Stat. Mech. P09012 (2011) [arXiv:1106.5652].

Intensive thermodynamic parameters in nonequilibrium systems
E. Bertin, K. Martens, O. Dauchot, M. Droz, Phys. Rev. E 75, 031120 (2007) [cond-mat/0611681].

Definition and relevance of nonequilibrium intensive thermodynamic parameters
E. Bertin, O. Dauchot, M. Droz, Phys. Rev. Lett. 96, 120601 (2006) [cond-mat/0512116].


Effective temperature or pressure in non-equilibrium systems

Low thermal fluctuations in a system heated out of equilibrium
M. Geitner, F. Aguilar Sandoval, E. Bertin, L. Bellon, Phys. Rev. E 95, 032138 (2017) [arXiv:1612.04134].

Pressure of a gas of underdamped active dumbbells
M. Joyeux, E. Bertin, Phys. Rev. E 93, 032605 (2016) [arXiv:1602.07420].

Entropy-based characterization of the observable-dependence of the fluctuation-dissipation temperature
K. Martens, E. Bertin, M. Droz, Phys. Rev. E 81, 061107 (2010) [arXiv:1003.2585].

Dependence of the fluctuation-dissipation temperature on the choice of observable
K. Martens, E. Bertin, M. Droz, Phys. Rev. Lett. 103, 260602 (2009) [arXiv:0906.3482].

Nonequilibrium temperatures in steady-state systems with conserved energy
E. Bertin, O. Dauchot, M. Droz, Phys. Rev. E 71, 046140 (2005) [cond-mat/0412071].

Temperature in nonequilibrium systems with conserved energy
E. Bertin, O. Dauchot, M. Droz, Phys. Rev. Lett. 93, 230601 (2004) [cond-mat/0406720].

Effective nuclear temperature in a fluctuating spin system
E. Bertin, P. Bonville, J.-P. Bouchaud, J. Hodges, J.-P. Sanchez, P. Vuillet, Eur. Phys. J. B 27, 347 (2002) [cond-mat/0110334].



INTERDISCIPLINARY APPLICATIONS OF STATISTICAL PHYSICS


Models of interacting social agents

Emergence of simple characteristics for heterogeneous complex social agents
E. Bertin, Symmetry 12, 1281 (2020) [arXiv:2007.01095].

In social complex systems, the whole can be more or less than (the sum of) the parts
E. Bertin, P. Jensen, C. R. Physique 20, 329 (2019) [arXiv:1901.04189].

Giant catalytic effect of altruists in Schelling's segregation model
P. Jensen, T. Matreux, J. Cambe, H. Larralde, E. Bertin, Phys. Rev. Lett. 120, 208301 (2018) [arXiv:1803.10505].

Symmetry restoration by pricing in a duopoly of perishable goods
S.D. Yi, S.K. Baek, G. Chevereau, E. Bertin, J. Stat. Mech. P11001 (2015) [arXiv:1508.00975].

Dynamical fluctuations in a simple housing market model
R. Lemoy, E. Bertin, J. Stat. Mech. P12007 (2012) [arXiv:1203.5298].

Symmetry-breaking phase transition in a dynamical decision model
G. Lambert, G. Chevereau, E. Bertin, J. Stat. Mech. P06005 (2011) [arXiv:1104.5418].

Socio-economic utility and chemical potential
R. Lemoy, E. Bertin, P. Jensen, EPL 93, 38002 (2011) [arXiv:1010.3225].

Competition between collective and individual dynamics
S. Grauwin, E. Bertin, R. Lemoy, P. Jensen, Proc. Natl. Acad. Sci. USA 106, 20622 (2009) [arXiv:0907.2167].


Statistical physics and signal processing

Random vector and time series definition and synthesis from matrix product representations: from statistical physics to Hidden Markov Models
F. Angeletti, E. Bertin, P. Abry, IEEE Transactions on Signal Processing 61, 5389 (2013) [arXiv:1203.4500].

Critical moment definition and estimation, for finite size observation of log-exponential-power law random variables
F. Angeletti, E. Bertin, P. Abry, Signal Processing 92, 2848 (2012) [arXiv:1103.5033].

Linearization effect in multifractal analysis: Insights from the Random Energy Model
F. Angeletti, M. Mézard, E. Bertin, P. Abry, Physica D 240, 1245 (2011) [arXiv:1012.3688].


Sum and extreme value statistics

General limit distributions for sums of random variables with a matrix product representation
F. Angeletti, E. Bertin, P. Abry, J. Stat. Phys. 157, 1255 (2014) [arXiv:1406.5016].

Large deviations for correlated random variables described by a matrix product ansatz
F. Angeletti, H. Touchette, E. Bertin, P. Abry, J. Stat. Mech. P02003 (2014) [arXiv:1310.6952].

Statistics of sums of correlated variables described by a matrix product ansatz
F. Angeletti, E. Bertin, P. Abry, EPL 104, 50009 (2013) [arXiv:1304.5406].

Renormalization flow for extreme value statistics of random variables raised to a varying power
F. Angeletti, E. Bertin, P. Abry, J. Phys. A: Math. Theor. 45, 115004 (2012) [arXiv:1112.2965].

Renormalization flow in extreme value statistics
E. Bertin, G. Györgyi, J. Stat. Mech. P08022 (2010) [arXiv:1006.5625].

Extreme statistics and volume fluctuations in a confined one-dimensional gas
E. Bertin, M. Clusel, P.C.W. Holdsworth, J. Stat. Mech. P07019 (2008) [arXiv:0803.4149].

Global fluctuations in physical systems: a subtle interplay between sum and extreme value statistics (Review article)
M. Clusel, E. Bertin, Int. J. Mod. Phys. B 22, 3311 (2008) [arXiv:0807.1649].

Generalised extreme value statistics and sum of correlated variables
E. Bertin, M. Clusel, J. Phys. A: Math. Gen. 39, 7607 (2006) [cond-mat/0601189].

Global fluctuations and Gumbel statistics
E. Bertin, Phys. Rev. Lett. 95, 170601 (2005) [cond-mat/0506166].